本文系统地总结了近年来钠离子电池中硬碳负极材料的研究进展以及相应储钠机理的发展历程,并从结构设计和电解液调控两方面综述了硬碳材料性能的提升策略。简述了前驱体的选择、碳化温度、预处理、造孔剂、杂原子掺杂、材料复合、电解液调控以及预钠化等策略对硬碳负极材料储钠性能的影响。本文为高性能低成本硬碳材料的设计合成和电解液匹配提供了新的见解,并展望了未来硬碳负极材料进一步研发的方向。
非质子锂-氧气电池具有高理论能量密度,在过去几年里受到了广泛关注。然而,动力学缓慢的氧还原反应(ORR)/氧析出反应(OER)和放电产物Li2O2导电性差导致锂-氧气电池过电位大,放电容量有限,循环寿命短。开发有效的锂-氧气电池正极催化剂可以调控放电与充电过程中Li2O2的形成和可逆分解,减小放电/充电极化。尽管提升ORR/OER动力学的正极催化剂已经取得了一系列重要进展,但是对正极在放电和充电中Li2O2生成和分解过程的理解依然是不足的。这篇综述聚焦于锂-氧气电池正极催化剂的最新进展,总结了催化剂与Li2O2生成/分解的作用关系,本文首先指出了锂-氧气电池正极面临的科学问题,包括动力学缓慢的ORR/OER过程和导电性差的反应产物Li2O2钝化电极,并提出了锂-氧气电池正极设计准则。通过对最近报道的正极催化剂进行分类讨论,明晰调控催化剂活性位点策略,理解在正极反应过程中不同催化剂的活性位点对反应中间产物的吸附状态,以及对Li2O2生成和分解的作用机制,评估了不同类型正极催化剂在锂-氧气电池的潜在应用。最后总结了锂-氧气电池正极催化剂依然存在的挑战,例如阐明正极催化剂活性位点与附着的Li2O2界面在充放电过程中的变化,并揭示了设计高效正极催化剂的决定因素,展望了通过光/磁协助、负极保护以及电解液设计等策略,进一步推动锂-氧气电池的应用。
近年来,固体氧化物电解池(SOEC)作为一种高效的电化学能量转换装置,由于其大电流密度、高法拉第效率和高能量效率受到广泛的关注。阳极析氧反应(OER)是SOEC中重要的电极反应,涉及四电子转移过程,反应动力学缓慢,在电解过程中阳极极化电阻较大且能耗高。因此,设计高效稳定的阳极材料对提高SOEC性能及推动SOEC实际应用至关重要。近年来,高性能阳极研究取得了一系列进展。在本综述中,重点介绍了CO2和H2O电解的反应机理,总结了不同类型阳极材料的物理化学和电化学性能,讨论了各种有效的阳极优化策略。此外,还对SOEC的未来研究进行了展望。这对阳极材料的发展和SOEC的实际应用有一定的指导意义。
由于具有能量密度高、成本低等优点,锂硫电池成为最有前景的下一代电池体系之一。然而,锂硫电池的实际应用仍面临着严峻挑战,如硫和硫化锂的低电导率、多硫化物的穿梭效应和锂枝晶的生长等。通过电解液的优化,可以改善电极|电解质界面,减弱副反应,提高电池性能。其中,电解液中的功能添加剂能有效调节电极界面和电池的氧化还原机制。本文系统性总结了锂硫电池添加剂的最新研究进展,并根据添加剂对锂金属负极的保护作用和对硫正极的稳定作用进行了分类。另外,本文详细讨论了添加剂在硫正极的作用,如抑制多硫化物的溶解和穿梭、充当氧化还原介质、激活硫化锂的沉积与溶解等。最后,本文展望了锂硫电池添加剂的发展前景,希望能对高性能锂硫电池电解液的设计提供借鉴。
超微电极电极尺寸小,双电层电容小,IR降小,传质速率快,响应快,信噪比高,兼具时间和空间分辨率,不仅可以研究快速电极反应动力学性质,而且可以作为电化学扫描显微镜探针,实现基底反应活性的成像,在电化学各个领域均有重要应用,成为一种重要的电化学实验方法。本文将扼要介绍超微电极的基本原理、一种简易的制备方法及其伏安性能的表征实验,以期对开展超微电极实验研究的电化学工作者有所裨益。
电解槽的结构和运行参数对碱性水电解的性能起着重要作用。针对工业碱性水电解槽紧凑的装配结构,特别是在电流密度大于5000 A·m-2时,本文首次建立了耦合电场和欧拉-欧拉k-ε湍流流场的三维数值模型,以准确模拟碱性水电解槽的性能。将模拟结果与实验数据进行比较,验证了模型的准确性。通过电解槽内部电场和流场特性的反馈,确定了适合的浓度、流量的操作条件和流道结构的优化设计方法。适当增加电解液浓度和流速有利于降低槽电压。KOH水溶液的最佳浓度和流速分别为6.0 - 8.0 mol·L-1和30.0 - 45.0 mL·min-1。随着电极与隔膜距离的增加,欧姆过电压显著增加;流道高度和双极板上导流柱的排列方式对电压的影响微弱,但三角形排列的导流柱和流道高度的增加有利于提高流体的分布均匀度,适当增加导流柱之间的距离有利于降低槽电压。多流体出入口电解槽有利于产生更均匀的流体分布,流道高度对多出入口电解槽同样影响不大。宽导流柱间距的多流体出入口电解槽G-2.5-T-0-5-3,配合高流量,既能降低槽电压,又能提高电解质在电极面的法向流速,使电解槽发挥最佳性能。本工作对碱性水电解高效电解槽的放大设计和优化具有一定指导意义。
固态锂硫电池具有高能量密度和高安全性的潜在优势,被认为是最有前景的下一代储能体系之一。虽然固态电解质的应用有效地抑制了传统锂硫电池存在的“穿梭效应”和自放电现象,固态锂硫电池仍面临着多相离子/电子输运、电极/电解质界面稳定性、化学-机械稳定性、电极结构稳定性和锂枝晶生长等关键问题亟待解决。针对以上问题,本综述对近年来固态电解质、硫基复合正极、锂金属及锂合金负极以及电极/电解质界面的研究进行了详细的论述。作为固态锂硫电池的重要组成部分,固态电解质近年来受到了研究者们的广泛关注。本文首先对在锂硫电池中得到广泛应用的聚合物基、氧化物基、硫化物基固态电解质的种类和性质进行了概述,并对其在固态锂硫电池中的最新应用进行了系统的总结。在此基础上,对以单质硫、硫化锂、金属硫化物为活性物质的复合硫正极、锂金属及锂合金负极的反应机理以及面临的挑战进行了归纳和比较,对其解决策略进行了总结和分析。此外,对制约固态锂硫电池性能的电极/电解质界面离子/电子输运以及界面相容性问题及其改性策略进行了系统的阐述。最后,对固态锂硫电池的未来发展进行了展望。
碘因来源丰富和具有较快的氧化还原反应动力学使其作为电池的正极材料而倍受青睐,然而,由于碘单质在电解液中的高溶解性而带来的穿梭效应,使得电池的性能下降。本文在水系锌离子电解液中添加聚乙二醇(PEG400)和碘化钾,PEG400能与碘发生络合,抑制了单质碘和碘离子生成碘三离子(I3-)的反应,进而避免了碘的溶解;最后,该电解液搭配双层碳布集流体、锌片及双层隔膜组装成电池,在1 mA·cm-2电流密度下,首圈容量可达1.62 mAh·cm-2,参与氧化还原反应碘占该电池电解液中碘质量的47.52%,库仑效率为93%左右;而在7 mA·cm-2高电流密度下,库仑效率可达98%左右,循环1200圈后,循环保持率为58.33%。
锂硫电池具有超高的理论能量密度(2567 Wh·kg-1),且其实际能量密度最高可达600 Wh·kg-1。然而,液态体系的Li-S电池和传统锂电池一样存在着安全隐患。用固态电解质取代电解液有望提高锂电池的安全性能,在近二十年受到了广泛的研究。对于固态锂硫电池来说,除了由于正极材料本身的不同带来的转化机制上的差别,固态电解质的物理化学性质也会显著影响其电化学行为。这篇综述分类讨论了已报道的不同固态锂硫电池体系在性能上的优缺点及其中主要的失效机制,对其能量密度低、循环稳定性差的原因及改善电池综合性能的策略进行了归纳分析,旨在从固态锂硫电池微观机制到全电池水平的工程化设计提供全面的理解,推动固态锂硫电池的进一步发展。
耦合可再生电能的电解水制氢是一项极具前景的绿氢技术,该技术仍受限于阳极析氧反应(OER)动力学慢、过电位高等问题的限制。在阳极端采用热力学更容易的电氧化反应代替OER,可大幅降低电耗并且在阳极端获得增值产物,是电解制氢的一种新策略。甘油作为生物柴油生产的主要副产品且产能过剩,其电催化氧化(GOR)理论电位比OER低。基于此,本研究工作报道了一种耦合酸性析氢反应(HER)与碱性GOR的混合酸/碱双电解液的制氢电解器,其以泡沫镍(NF)支撑Co3O4纳米片(NS)电极(Co3O4·NSs/NF)为阳极,商用碳载铂修饰碳布电极为阴极。在阳极端,Co3O4·NSs/NF对GOR电催化表现出较低的过电位和转化为甲酸盐的高选择性。在该混合酸/碱双电解液电解槽中,仅仅需要额外施加0.55 V的外加电压,即可达到10 mA·cm-2的产氢电解电流密度,并可以在阳极将甘油高选择性地转化为甲酸盐,其中产氢的法拉第效率接近100%。本研究工作为电解制氢提供了一条节电、阳极增值转化的技术路线。
金属/氧化物的界面能带排列对于理解电化学界面有至关重要的作用。本文介绍了如何基于从头算分子动力学模拟得到金属/氧化物-水界面的能带排列。计算能带排列可与实验能带排列直接进行比较,以获得该电位下分子层面上的理解。金属界面的能带排列可与实验测定的零电荷电位对比,半导体氧化物界面的能带排列可与实验上零电荷点下测定的平带电势相比较。
铜互连是保障电子设备的功能、性能、能效、可靠性以及制备良品率至关重要的一环。铜互连常通过在酸性镀铜液电镀铜实现,并广泛用于芯片、封装基材和印制电路板中。其中,有机添加剂在调控铜沉积完成沟槽填充、微孔填充以形成精密线路和实现层间互连方面起着决定性作用。添加剂主要由光亮剂、抑制剂和整平剂三组分组成,在恰当的浓度配比下,添加剂对于盲孔超级填充具有协同作用。目前,已报导的文献聚焦于代表性添加剂的超填充机理及其电化学行为,而对于添加剂的化学结构与制备方法鲜有深入研究。本文重点研究了各添加剂组分的制备工艺和快速电化学筛选方法,为电镀铜添加剂的未来发展提供理论指导。
锂硫电池是极具应用潜力的下一代高能量密度电池体系之一。然而,其充放电中间产物多硫化锂的“穿梭效应”不仅消耗大量电解液,还导致硫活性物质利用率低、循环寿命短,是锂硫电池产业化进程中的主要瓶颈之一。引入催化剂加速硫活性物质转化速率,减少多硫化锂在电解液中的累积浓度,是抑制穿梭效应的有效解决策略。高效的催化剂应具备丰富的催化活性位点,以确保高效吸附多硫化锂并加速其向不溶的充放电产物转化。本文制备出硫掺杂石墨烯表面原位负载的双金属硫化物NiCo2S4(NCS@SG)并将其作为催化剂应用于锂硫电池的中间层。相比于单金属硫化物(CoS),NiCo2S4催化剂具有多活性中心催化位点,可以更好地吸附多硫化锂并促进其向放电产物快速转化。应用上述中间层后,电池的充放电比容量、库仑效率和循环稳定性得到了明显提升。当硫的负载达到15.3 mg·cm-2时,经过50次循环后,具有NCS@SG中间层的电池获得了高达93.9%的容量保持率。上述结果表明,设计双金属基催化剂是优化锂硫电池催化剂活性和反应效率的重要方向。
可再生能源驱动电催化水分解产氢气在现代氢能及氢燃料电池可持续发展方面,有着极其重要的地位。其中,性能优良催化剂的设计与开发又是重中之重。本文重点发展了一种磷掺杂的铂-钌合催化剂(Ru-P)#Pt/C),TEM分析确认Ru金属纳米粒子的球形形态,XRD表征Ru纳米粒子以六方密堆积形式存在。XPS分析进一步说明了Ru以金属态存在,Pt的原子比在14.5%左右,且以轻微氧化的状态存在,表明其可能与P成键。(Ru-P)@Pt合金催化剂在碱性电解液中表现出优异的电解水析氢性能,在10 mA·cm-2的电流密度下的过电位仅为17 mV vs. RHE,Tafel斜率值为27 mV·dec-1,表明该催化剂析氢决速步为Tafel步骤。而同等条件下,仅P掺杂的Ru催化剂及Pt负载的P掺杂的CNT,其性能均远逊于该目标催化剂,表明了P与Pt共掺杂的协同作用。(Ru-P)#Pt/C合金催化剂经过24 h耐久性测试,其10 mA·cm-2的过电位及稳定性测试后LSV电流仅出现轻微衰退。这表明P掺杂的Ru-Pt合金催化剂中Ru、Pt、P活性位点间的协同作用,显著提高了电催化析氢活性与稳定性,为高性能碱性电解水析氢催化剂的设计打开了广阔的前景。
高镍三元电池的高能量密度是取代化石能源,推动清洁能源发展的核心优势,同时也是导致电池严重安全隐患的根本原因。初级胺类与次级胺类能与常见的含碳酸乙烯酯电解液发生开环聚合,从而形成正负极间隔离层,提高电池热安全性。本文基于胺类和电池组分间的化学反应,在电池材料层面和单体层面对电池的安全性展开了研究。在材料层面,利用差示扫描量热法测试锂离子电池中有无胺类添加剂对不同组分间的热稳定性影响。在单体层面,使用绝热加速量热仪对有无添加剂全电池的安全性进行测试,提取热失控特征温度。加入胺类添加剂后电池组分间部分化学反应被提前,同时总放热量明显减少,最大温升速率下降,电池热失控得到有效抑制。
本文在前期优化的电镀液的基础上,使用脉冲电镀工艺获得了高密度的纳米孪晶铜。为了进一步揭示孪晶形成的影响因素,研究了系列MPS浓度在镀液中的作用。当镀液中并未添加MPS时,镀层由粗大的晶粒组成,平均晶粒大小为0.9 μm,晶粒内部含有少量的垂直或倾斜于膜面的孪晶界,镀层的晶粒取向为(110)和(111)共存,两者织构比例分别为49%和27.8%。从FIB微观组织观察和X射线衍射的结果可知,当镀液中添加10 ppm的MPS后,镀层组织变为柱状纳米孪晶铜组织,柱状晶内部含有高密度水平方向的孪晶界,同时晶粒取向变为高度择优的(111)。当MPS含量从10 ppm持续上升至40 ppm,镀层组织和晶粒取向无明显变化。具体地,当镀液中添加40 ppm的MPS时,镀层晶粒大小为0.6 μm,且镀层晶粒(110)和(111)的织构比例分别为3.45%和95.1%。这说明,可以通过MPS的含量调节提高纳米孪晶铜电镀液的填充能力,而纳米孪晶微观组织的形成并不受影响。基于上述结果,我们使用该电镀液配方及工艺进行了大马士革微盲孔的填充。结果表明,当MPS含量为40 ppm时,可以实现大马士革微盲孔的无孔填充。纳米孪晶铜电镀液填充能力的提升使得纳米孪晶铜在IC制造应用成为可能,很大程度上促进了下一代互连材料的发展。
锂硫电池由于具有较高的能量密度而被认为是极具发展前景的储能设备之一。然而,硫正极遭遇迟缓的反应动力学、缓慢的电荷转移、大的体积膨胀、严重的多硫化锂穿梭效应,这些问题不可避免地导致锂硫电池表现出低的可逆容量、差的倍率性能、短的循环寿命,限制了锂硫电池的实际应用。本文总结了钴/碳复合材料(包括钴纳米颗粒和钴单原子)作为硫宿主的研究进展。总的来说,钴扮演着电催化剂的角色,能够抑制多硫化锂的穿梭效应,加快电化学反应动力学,促进离子/电子转移以及缓解体积膨胀。同时,我们展望了钴/碳复合材料作为锂硫电池硫宿主的发展前景。本工作可为钴/碳复合材料作为锂硫电池硫宿主提供完整的蓝图和建设性的建议,同时这些策略也可用于其他金属-硫电池。
本文采用CCM法(catalyst coated membrane)技术,结合单电池极化曲线、电化学阻抗谱、极限电流法和表面接触角等多种表征技术,系统研究了直接聚四氟乙烯(PTFE)分子添加以及PTFE修饰的疏水性碳(PTFE@XC72)等不同疏水化方法对质子交换膜燃料电池(PEMFC)的阴极催化层电化学性能、氧气传输阻抗和质子传输阻抗的影响。在此基础上,通过构建PTFE梯度化疏水性结构来进一步优化PEMFC的性能。结果表明,与添加PTFE@XC72相比,直接添加适量的PTFE分子对膜电极(MEA)性能提升效果更为显著,这主要与该疏水结构可在维持高速质子传导的同时,极大降低催化层的氧气传输阻抗有关。当直接添加的PTFE与催化层中碳载体的质量比为0.1时,MEA呈现最好的性能。在添加PTFE@XC72的MEA中,由于额外的碳颗粒导致催化层厚度增加,延长了反应物质的传输路径,从而使得质子传输阻抗和氧气传输阻抗均上升。在此基础上,通过在催化层不同位置直接添加PTFE构建梯度化疏水性结构。结果表明,当适量PTFE靠近催化层与气体扩散层界面分布时,MEA呈现最好的性能,峰值功率密度比未经疏水性处理的膜电极高接近20%,氧气传输阻抗大幅降低。
癌胚抗原(CEA)是一种酸性糖蛋白,其作为一种广谱肿瘤标志物在恶性肿瘤的鉴别诊断与监测等方面具有重要价值。在此,借助于硼酸盐亲和辅助电化学调控原子转移自由基聚合(BA-eATRP)的双重信号放大作用,我们报道了一种电化学适体传感器,用于CEA的超灵敏、高选择性检测。基于BA-eATRP的电化学CEA适体传感的基本原理为:待核酸适体捕获CEA抗原后,借助于苯硼酸(PBA)基团与单糖残基上的顺式二醇基团间的选择性亲和相互作用将ATRP引发剂位点靶向性地共价偶联到CEA抗原上;随后,以二茂铁甲基丙烯酸甲酯(FcMMA)作为单体,借助于eATRP将二茂铁(Fc)探针引入电极表面。由于CEA上含有数百个顺式二醇基团,基于硼酸盐亲和的交联反应可使得在每个CEA抗原上标记数百个ATRP引发剂分子。此外,通过eATRP反应,可以在电极表面接枝长的二茂铁基聚合物链,使得每个标记有ATRP引发剂的位点均能连接上成百上千个Fc探针。因此,BA-eATRP可使得每个CEA抗原上标记上大量的Fc探针。在最佳条件下,基于BA-eATRP的电化学适体传感器能够实现浓度低为0.34 pg·mL-1的CEA的高选择性检测,其线性范围为1.0-1000 pg·mL-1。而且,该适体传感器可用于人血清中CEA的定量分析。基于BA-eATRP的电化学适体传感器具有成本低廉、操作简便等优良特性,在CEA的超灵敏、高选择性检测方面具有广阔的应用前景。
双功能氧催化剂的催化活性及稳定性是决定一体式可再生燃料电池能否高效运作的关键因素之一。得益于分别对于氧还原及氧析出反应特定中间产物适当的结合能,铂与铱、钌及其氧化物所制成的贵金属催化剂,常被应用于一体式可再生燃料电池中作为双功能氧催化剂。同时,近年来对于非铂族双功能氧催化剂的研究也取得了较大进展。本篇综述从一体式可再生燃料电池中氧还原及氧析出反应的作用机理出发,首先着重对传统铂基双功能催化剂的构效关系进行了总结,其次介绍了钙钛矿型、尖晶石型氧化物、非金属等新型双功能氧催化剂的发展趋势。此外,本文对于该研究领域所存在的限制条件和发展路线也进行了总结与展望。