本文系统地总结了近年来钠离子电池中硬碳负极材料的研究进展以及相应储钠机理的发展历程,并从结构设计和电解液调控两方面综述了硬碳材料性能的提升策略。简述了前驱体的选择、碳化温度、预处理、造孔剂、杂原子掺杂、材料复合、电解液调控以及预钠化等策略对硬碳负极材料储钠性能的影响。本文为高性能低成本硬碳材料的设计合成和电解液匹配提供了新的见解,并展望了未来硬碳负极材料进一步研发的方向。
碘因来源丰富和具有较快的氧化还原反应动力学使其作为电池的正极材料而倍受青睐,然而,由于碘单质在电解液中的高溶解性而带来的穿梭效应,使得电池的性能下降。本文在水系锌离子电解液中添加聚乙二醇(PEG400)和碘化钾,PEG400能与碘发生络合,抑制了单质碘和碘离子生成碘三离子(I3-)的反应,进而避免了碘的溶解;最后,该电解液搭配双层碳布集流体、锌片及双层隔膜组装成电池,在1 mA·cm-2电流密度下,首圈容量可达1.62 mAh·cm-2,参与氧化还原反应碘占该电池电解液中碘质量的47.52%,库仑效率为93%左右;而在7 mA·cm-2高电流密度下,库仑效率可达98%左右,循环1200圈后,循环保持率为58.33%。
锂电池体系中负极表面固态电解质界面相(SEI)对锂电池性能起到至关重要的作用。然而,SEI结构和化学组成复杂,其形成机理至今仍未完全阐明,阻碍了锂电池的发展和应用。本文从方法学角度出发,采用表面增强拉曼光谱(SERS)“借力”策略,通过优化银纳米粒子的结构并借助其外来表面局域等离激元共振作用,开展以EC-DMC为溶剂的碳酸酯类电解液体系中SEI成膜过程的原位研究。为了确保可靠的原位SERS测试,我们设计了一种三电极体系气密拉曼电池。我们利用原位SERS方法,在纳米银电极上获得了SEI成膜过程的组成和结构信息。研究表明,SEI随电位变化呈现出双层结构,其中内层由薄且致密的无机组分构成,外层由疏松的有机组分构成。同时,研究发现LEMC是EC还原的主要成分,而不是LEDC,且金属锂参与的化学反应在形成稳定SEI中的起到关键作用。此外,锂发生沉积后,由于锂与银的合金效应导致其介电常数发生变化,从而削无法进一步增强SEI的拉曼信号。本文为深入理解负极表面SEI的形成及演变过程提供依据,并为今后开展锂电池体系相关界面过程的原位研究提供借鉴。
电化学沉积和电化学腐蚀的核心问题是不同电压/电荷作用下的电极/电解质界面行为,其控制量是溶解/沉积反应路径的势垒,但是势垒的测量和计算难度比较大。本文采用密度泛函和连续介质耦合方法研究了不同加载电荷面密度下平整表面和含阶梯表面的Cu(111)面薄板电极直接和间接溶解/沉积两种路径的能量形态。结果发现,不同加载电荷面密度下溶质Cu原子在Cu(111)面的表面扩散和溶解过程中初末态能量分别和最高过渡态能量存在简单的线性关系,符合经典的Brønsted-Evans-Polanyi关系。在直接/间接溶解和沉积过程中,势垒和加载的电荷面密度呈线性或二次函数关系。通过这些表达式可以直接从稳态能量计算溶解/沉积和表面扩散的势垒,也可以直接计算不同加载电荷面密度下的势垒,极大的降低实验和计算工作量。通过拟合公式计算出不同临界加载电荷面密度时的势垒大小可以得出:对于溶解过程中,随着加载电荷面密度逐渐增大至0.135 |e|/Å2,阶梯处原子首先以直接溶解的方式进入到电解质溶液中;对于沉积过程,随着加载电荷面密度降低至0.105 |e|/Å2,电沉积首先发生在平整表面,并可越过较低的表面扩散势垒移动至台阶处,表面扩散是速率控制步骤。当加载电荷面密度进一步减小为0.086 |e|/Å2,此时的沉积方式以直接沉积到阶梯位置为主。
发展绿色可持续的水电解制氢技术有利于实现“碳中和”战略目标,而开发高效稳定的析氧反应催化剂对水电解技术至关重要。本研究以NiFeV固态金属醇盐为前驱体,采用醇盐自模板法制备碳封装NiFeV基催化剂。研究结果表明,NiFeV基催化剂呈现出均匀的球状结构,用于电解水析氧反应电催化剂时仅需381 mV的过电位即可获得20 mA·cm-2的电流密度。NiFeV基催化剂良好的催化活性和稳定性主要得益于均匀的球状结构,V对电子结构的优化调控以及封装碳层对金属颗粒的保护作用。此工作通过V掺杂和碳封装的策略,为提升析氧催化剂的电催化性能提供了有利借鉴。
固体氧化物电解池是一种新型能源转换技术,能实现间歇式能源到氢能的高效转化,为能源的有效利用提供了新途径。本文针对固体氧化物电解池金属镍基阴极支撑体在电解过程中的局部氧化以及由此引发的电池结构稳定性问题,提出了一种多孔氧化钇稳定的二氧化锆(YSZ)支撑型管式固体氧化物电解池,其构型为多孔YSZ支撑体/Ni-YSZ燃料极电流收集层/Ni-YSZ燃料极电化学催化层/YSZ/Ce0.8Sm0.2O1.9双层电解质层以及La0.6Sr0.4Co0.2Fe0.8O3-δ空气电极,研究了造孔剂(聚甲基丙烯酸甲酯,PMMA)的含量对多孔YSZ支撑体的孔隙率、孔径分布和支撑体机械强度的影响,考察了电解池在H2O-H2气氛中的电化学电解性能。研究结果表明,当PMMA含量为25wt.%时,电解池具有最优的综合力学性能和电解催化活性,在750 °C的工作温度下,电解池的产氢气速率为3 mL·min-1·cm-2,电解池在10次升降温热循环过程中电解性能衰减为~5%,表现出优良的电解稳定性。本研究结果验证了多孔YSZ支撑型管式电解池的应用可行性。
以ZIF-67为前驱体,采用异原子掺杂、高温热处理等方法制备了含有多种过渡金属、非金属粒子的多孔碳材料作为锌-空气电池催化剂。通过SEM、XRD、XPS和电化学方法对催化剂进行物理化学表征和催化性能测试,最后组装成全电池进行充放电性能实验。结果表明,制得的FeNi-CoP/NC的ORR半波电位达到了0.83 V,高于商用的Pt/C催化剂;OER电流密度在10 mA·cm-2时过电位为290 mV并可平稳地保持12 h,显示了良好的催化活性与稳定性。全电池性能测试显示其峰值功率密度较高为150 mW·cm-2,在3 mA·cm-2电流密度下保持了0.6 V的较窄电势间隙。
随着电动汽车的高速发展,对锂离子电池的能量密度、循环性能和成本提出了更高的要求,目前已有的高镍材料LiNi0.8Co0.1Mn0.1O2(NCM811)能量密度可以达到760 Wh·kg-1,已成为锂离子正极材料发展的重要方向。超高镍三元正极材料( LiNixCoyMn1-x-yO2,x ≥ 0.90)具有超过210 mAh·g-1比容量,因而可实现更高的能量密度,但目前关于超高镍材料的研究工作仍然比较少。超高镍正极材料的研究极具实用意义,因此,本文选择LiNi0.96Co0.02Mn0.02O2(NCM96)这一超高镍材料进行研究。为了提升超高镍三元正极材料NCM96的电化学性能,本工作采用了氧化钨和磷钨酸来对其进行包覆改性,并系统研究了材料改性前后的结构、形貌及电化学性能。其中,氧化钨包覆能有效提升三元材料的电化学性能,但目前尚未有利用氧化钨对超高镍正极材料进行包覆改性的报道。此外,磷钨酸是一种可以同时实现氧化钨和磷酸盐双重包覆的物质,双重包覆有望实现比单一元素包覆更优的电化学性能。本工作通过NCM96前驱体与磷钨酸和氧化钨液相共混,烘干后混锂烧结实现氧化钨和磷钨酸包覆。研究结果表明,两种表面改性方法对超高镍三元正极材料首圈放电比容量影响都较小,且能有效改善材料的长期循环性能。对比两种改性材料的高温电化学性能,发现经磷钨酸包覆改性后的材料其高温循环性能优于氧化钨包覆改性,说明磷钨酸的P/W双元素改性优于WO3的W单元素改性。
电极的性能是实现水系醌基氧化还原液流电池(AQRFBs)高能量效率的关键。本文采用尿素水热反应对石墨毡(GF)进行改性,同时研究了水热反应时间对氮掺杂石墨毡表面官能团和结构的影响。利用扫描电子显微镜(SEM)、比表面积及孔隙度分析仪(BET)、拉曼光谱(Raman)和X射线光电子能谱(XPS)对改性电极的表面形貌、比表面积、碳缺陷、元素含量和表面官能团进行了表征。然后,通过循环伏安法、电化学阻抗谱和单电池循环对改性电极的电化学性能进行了研究。结果表明,氮掺杂提高了石墨毡的比表面积、亲水性和电导率。氮掺杂石墨毡(NGFs)具有优异的电化学催化活性和较低的电荷转移电阻。与GF相比,在100 mA·cm-2时,电池负极使用NGF-6电极后,醌基氧化还原液流电池的能量效率提高了8.0%。
电子转移反应的标准反应速率常数是电化学反应的“本征”动力学性质,也是电极过程动力学研究的重要内容之一,对于电极反应的机理和路径的理解以及电催化剂和电池材料等的筛选和理性设计均具有重要意义。本文将主要介绍电化学反应速率常数测定的实验方法,包括极化曲线、旋转圆盘、超微电极、扫描电化学显微镜、电化学阻抗谱、电流阶跃、电势阶跃以及循环伏安等方法,以期对开展电极过程动力学研究的相关研究人员和学生有所裨益。
碱性聚合物电解质作为现代碱性氢氧燃料电池的核心组成部分,其单离子导体的特性使得“电极/碱性聚电解质”界面的性质与“电极/溶液”界面有所不同。本文使用微电极,运用循环伏安、电化学交流阻抗以及浸入法等方法,测定了电极/碱性聚电解质界面的微分电容曲线和零电荷电位。该界面的微分电容曲线呈“U”状,且存在局域极小值,该极小值所对应的电位与浸入法测得的零电荷电位数值一致。单离子导体的特性使得“电极/碱性聚电解质”界面在零电荷电位两侧表现出不同的电化学极化行为。
电化学还原硝酸盐过程关键在于该废水处理过程中参数的有效控制。基于硝态氮电化学还原的测试数据和各参数间的相关性,得出与出水效果密切相关的四因素,即反应时间、初始浓度、初始pH和电流密度,采用BP神经网络算法建立了电化学法还原硝态氮的预测模型,并验证了模型的准确性。结果表明,4-7-1型BP神经网络网络构型最优,模型预测的去除效果与实测值相吻合,R2为0.9095。利用BP神经网络模型对参数调控,可以优化电化学处理过程:对电流密度进行阶段性调控,在相同处理量下可降低15%的能耗;在水质波动情况下进行电流密度控制,在相同处理时间内可保证出水达标。该研究结果可以为智能控制电化学去除硝态氮的过程提供参考。
本文介绍了一种用于处理电厂脱硫废水的电聚浮+电解联合工艺深度,实现废水中SS、COD和氯离子的有效去除。通过线性伏安扫描法探究了电厂脱硫废水中亚硫酸根和氯离子在β-PbO2电极表面的反应机理和相关动力学参数,以此验证了β-PbO2是良好的亚硫酸盐电催化氧化和电产活性氯的材料。实验室自制方形连续推流式电解槽,分为电聚浮段和电解段。电沉积法自制钛基β-PbO2网状电极为电解阳极。若以《火电厂石灰石-石膏湿法脱硫废水水质控制指标》(DL/T 997-20006)COD排放标准为处理终点,3.5 V电解电压下某电厂脱硫废水处理能耗仅为10.78 kWh∙m-3。电解电压为4.0 V时,电解槽运行300 min可去除废水中的绝大多数的COD和氯离子,二者去除率分别为91.43%和92.98%。验证了工艺路线的技术可行性和经济可行性。
锂金属和固态电解质在能量密度和安全性能上有巨大的提升潜力,被视为全固态电池的重要组成部分。具有高锂离子电导率(约10-3 S·cm-1)和高剪切模量(55 GPa)的无机石榴石型固态电解质被认为是理想的固态电解质之一,然而锂枝晶生长的问题依旧难以解决。在本文中,通过在石榴石表面蒸镀一层LiF-Sn复合修饰层,增加石榴石与锂金属的界面浸润性的同时构建了离子快速传输通道,阻挡了电子向石榴石体相的注入,有效地抑制了锂枝晶的生长。界面修饰层的存在使得界面阻抗由969 Ω·cm2降低至3.5 Ω·cm2,对称电池的临界电流密度提升至1.3 mA·cm-2,对称电池在0.4 mA·cm-2的电流密度下稳定循环200 h。
氧化还原电位和酸度常数作为重要的物理化学性质被应用于分析能源材料重要指标值。为了实现能源材料的计算设计,发展计算电化学的方法,在复杂电化学环境下计算这些性质至关重要。近年来,利用计算电化学方法计算氧化还原电位和酸度常数已经受到了广泛的关注。然而,常用的计算方法如基于隐式溶剂化模型的小分子自由能计算,对于复杂溶剂化环境的处理非常有限。因此,基于第一性原理分子动力学(AIMD)的自由能计算被引入来描述复杂溶剂化环境中的溶质-溶剂相互作用。同时,基于AIMD的自由能计算方法已经被证实可以准确预测这些物理化学性质。然而,由于AIMD计算效率低且计算资源需求大,需要引入机器学习分子动力学(MLMD)加速计算。MLMD通过机器学习方法,构建模拟体系结构到第一性原理计算结果的一对一映射,可以在低成本下实现长时间尺度的AIMD。对于氧化还原电位和酸度常数计算,如何构建训练机器学习势函数模型所需的数据集至关重要。本文介绍了如何通过自动化工作流实现自由能计算势函数的自动化构建,通过机器学习分子动力学计算自由能并转化为对应的物理化学性质。
高效电还原CO2(ECR)为有价值的多碳产物是解决CO2排放问题的有效解决方案。基于卟啉的金属有机框架(MOFs)具有多孔结构和有序的活性位点,有望提高ECR生成多碳产物的选择性。本文制备了由铜-四(4-羧基)卟啉(Cu-TCPP)和Cu2O组成的有机/无机杂化Cu-TCPP@Cu2O电催化剂,其中TCPP在调控形貌方面起着重要作用。ECR过程中原位形成的Cu与Cu-TCPP(Cu-TCPP@Cu)结合可以抑制析氢,富集CO中间体,促进C-C偶联生成C2产物。多孔碳(PC)负载的Cu-TCPP@Cu在PC上被还原为Cu纳米簇,同时对C2产物具有较高的ECR活性和选择性。催化剂在-1.0 V时(相对于可逆氢电极),C2产物法拉第效率为62.3%,部分电流密度为83.4 mA·cm-2,是纯Cu2O和TCPP的7.6倍和13.1倍。本论文研究了催化剂形貌和杂化结构如何提高ECR生C2产物的选择性,为高性能ECR催化剂的设计提供了新思路。
在碱性介质中,由于电极材料的较高的稳定性,电催化析氢反应(HER)具有实现大规模制氢的巨大潜力。然而,即使对于最突出的铂催化剂,HER在碱性介质中的反应动力学也比在酸性介质中慢2-3个数量级,这是由于碱性环境下质子的浓度较低。异质结构催化剂具有多种结构优势,研究表明,构建异质结构电催化剂是促进碱性HER动力学的有效策略。协同效应是异质结构的一个独特特征,这意味着一个功能活性位点作为水解离的促进剂,另一个活性位点则负责适度的氢吸附,从而协同提高HER催化性能。此外,异质结构中的每个构建模块都是可调节的,为构建最佳催化剂提供了更多的灵活性和可能性。同时,由于界面处两个组分之间存在费米能级差,可以合理地调控每个组分的电子结构,从而大幅度提高碱性介质中的HER催化性能。随着对纳米结构的深入理解,人们开发了更先进的设计策略来构建高性能异质结构电催化剂。本文综述了异质结构催化剂在碱性HER方面的最新发展,以及构建界面异质结构以促进碱性HER动力学性能的合理设计原则。我们首先介绍了HER在碱性介质中的基本反应途径,然后详细讨论了促进碱性HER动力学的新兴有效策略,包括协同效应、应变效应、电子相互作用、相工程和结构工程,最后提出了未来面向实际应用的新型异质结构催化剂设计所面临的挑战和研究机遇。
由于三元环结构在中间体、天然产品和药物的合成中发挥着重要作用,这使得开发新的策略以获得环丙烷已变得越来越重要。在此,我们提出了一种通过活性亚甲基化合物和芳基烯烃的分子间脱氢环化合成环丙烷的电催化方法。该电化学过程不需要化学氧化剂,允许从廉价和简单易得的原料中快速获得各种官能团化的环丙烷。
近年来,联合时频分析再次成为研究热点。超级电容器功率密度高和寿命长,但为了优化平衡功率密度和能量密度,需考虑两个关键因素:(1)多孔基质的比表面积;(2)孔内空间电解质可抵达性。本文采用联合时频分析方法,研究孔内电荷穿透深度及电流空间分布。具体开展了如下工作:(i)在复正弦电流激励下,推导单孔的时域响应和频域响应解析解,由此定义了描述电荷扩散行为的时频特征。(ii)采用联合时频方法,分析了内部参数和外部参数对孔内电荷穿透率的影响,揭示了孔内电荷有限扩散和无限扩散之间的演变规律。(iii)基于穿透率临界值,定义了孔内部参数的临界值,由此判断孔内电荷半无限扩散和有限扩散。本文提出联合时频分析方法,实现了多孔电极中复杂物理化学过程的信息融合,联合时频分析最终殊途同归,并提高诊断可靠性。
发展原位电化学光谱方法对深入研究电化学反应机理,并最终提高电池性能有着重要价值。建立在这一认识之上,能够应用于电池体系的原位光谱电化学表征技术被认为是表征电池电极材料性能的有效方法。但是受限于电池严格密封的不透明外壳和当前商用电池体系严格隔绝水氧的客观要求,开发更贴近真实电池工作条件的原位光谱电化学表征技术仍有较大需求。基于此,本文设计了一种基于传统纽扣电池架构的原位电化学池,该装置通过特殊设计实现了在尽可能模拟电池工作环境的前提下拥有透明的上盖,从而使发生电化学反应的同时进行光学检测成为可能。利用这一电化学池,本文以锂离子电池中常用的正极材料LiFePO4(LFP)、NCM811和LiCoO2(LCO)为例,对其电化学反应过程中的漫反射光谱进行了采集和分析。相关数据定量地揭示了不同种类电极材料在一般反射光路架构下对不同波长可见光的响应关系,并能够直接用于对单色光检测场景下的波长优化提供指导和依据。更进一步,本文还对不同材料在充放电过程中的光谱特征进行了定量分析,揭示了其光谱特征同材料内在能级状态间的相关性。综上,本文提出了一种基于漫反射光谱的原位光谱电化学表征方法,作为对光谱电化学应用于电池体系的有效补充,本方法能够为评估电极材料性能提供一种全新且简单直接的途径,并最终助力电池性能的提升。