电化学(中英文) ›› 2023, Vol. 29 ›› Issue (10): 2204301. doi: 10.13208/j.electrochem.2204301
所属专题: “下一代二次电池”专题文章
收稿日期:
2022-04-30
修回日期:
2022-06-03
接受日期:
2022-06-13
出版日期:
2023-10-28
发布日期:
2022-06-13
通讯作者:
*赵玉峰, Tel: (86-21)66131385, E-mail: 基金资助:
Xiu-Ping Yin, Yu-Feng Zhao*(), Jiu-Jun Zhang*()
Received:
2022-04-30
Revised:
2022-06-03
Accepted:
2022-06-13
Published:
2023-10-28
Online:
2022-06-13
摘要:
本文系统地总结了近年来钠离子电池中硬碳负极材料的研究进展以及相应储钠机理的发展历程,并从结构设计和电解液调控两方面综述了硬碳材料性能的提升策略。简述了前驱体的选择、碳化温度、预处理、造孔剂、杂原子掺杂、材料复合、电解液调控以及预钠化等策略对硬碳负极材料储钠性能的影响。本文为高性能低成本硬碳材料的设计合成和电解液匹配提供了新的见解,并展望了未来硬碳负极材料进一步研发的方向。
殷秀平, 赵玉峰, 张久俊. 钠离子电池硬碳基负极材料的研究进展[J]. 电化学(中英文), 2023, 29(10): 2204301.
Xiu-Ping Yin, Yu-Feng Zhao, Jiu-Jun Zhang. Research Progress and Performance Improvement Strategies of Hard Carbon Anode Materials for Sodium-Ion Batteries[J]. Journal of Electrochemistry, 2023, 29(10): 2204301.
表1
硬碳作为钠离子电池负极的性能汇总表
Precursor | Carbonization temperature (°C) | Capacity -ICE (mAh·g-1) | Rate capability (mAh·g-1) | Cycle number | Cyclability (mAh·g-1) | Ref. |
---|---|---|---|---|---|---|
Renewable Cotton | 1300 | 315%-83% | 180/0.3 A·g-1 | 100 | 305(97%) | [ |
Polyaniline | 1150 | 270%-51.6% | 40/3 A·g-1 | 500 | 207(77%) | [ |
Walnut shell | 1000 | 257%-71% | 48/2 A·g-1 | 300 | 170(70.8%) | [ |
Oak leaves | 1000 | 360%-74.8% | 270/0.04 A·g-1 | 200 | 243(90%) | [ |
Cherry petals | 1000 | 310.2%-67.3% | 25/1 A·g-1 | 500 | 131.5(89.8%) | [ |
Kelp | 1300 | 334%-64.1% | 96/1 A·g-1 | 200 | 205(93%) | [ |
Lignin | 1100 | 299%-68% | 77/3 A·g-1 | 300 | 298(98%) | [ |
Honeycomb | 900 | 221.5%-59.8% | 87.3/5 A·g-1 | 200 | 203(91.6%) | [ |
Pomelo peels | 700 | 314.5%-27% | 71/5 A·g-1 | 220 | 181(99.3%) | [ |
Lotus stems | 1400 | 351%-70% | 150/0.5 A·g-1 | 450 | 330(94%) | [ |
Chitosan | 800 | 245%-32.3% | 55/5 A·g-1 | 100 | 155(63.3%) | [ |
Artemia cyst shell | 850 | 325%-32% | 63/5 A·g-1 | 200 | 174(53.3%) | [ |
Eggshell membranes | 1300 | 310%-89% | 142/0.5 A·g-1 | 250 | 236(99%) | [ |
Tissue | 1300 | 338.2%-91.2% | 170/2 A·g-1 | 1000 | 286.5(93%) | [ |
Pitch | 1400 | 300.6%-88.6% | - | 200 | 279.8(93.1%) | [ |
Cork-derived | 1600 | 358%-81% | - | 200 | 312(87%) | [ |
Phenol-Formaldehyde | 1400 | 410%-84% | - | 40 | 393.6(96%) | [ |
Mg(C6H11O7)2 | 1500 | 478%-88% | 360/2.5 A·g-1 | 35 | 450(94.1%) | [ |
polyvinylpyrrolidone | 1000 | 393.4%-89% | 79.9/2 A·g-1 | 100 | 399.5(97.2%) | [ |
Graphene oxide | 1000 | 417%-57.3% | 83/5 A·g-1 | 100 | 133(83%) | [ |
Filter paper-pitch | 1000 | 282%-80% | 75/1.2 A·g-1 | 100 | 191(74%) | [ |
Xylose | 1200 | 363.8%-84.93% | 214/10 A·g-1 | 400 | 337(92.6%) | [ |
[1] |
Chen D Q, Zhang W, Luo K Y, Song Y, Zhong Y J, Liu Y X, Wang G K, Zhong B H, Wu Z G, Guo X D. Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization[J]. Energy Environ. Sci., 2021, 14 (4): 2244-2262.
doi: 10.1039/D0EE03916K URL |
[2] |
Zhang M H, Li Y, Wu F, Bai Y, Wu C. Boost sodium-ion batteries to commercialization: strategies to enhance initial coulombic efficiency of hard carbon anode[J]. Nano Energy, 2021, 82: 105738.
doi: 10.1016/j.nanoen.2020.105738 URL |
[3] |
Zhao L F, Hu Z, Lai W H, Tao Y, Peng J, Miao Z C, Wang Y X, Chou S L, Liu H K, Dou S X. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts[J]. Adv. Energy Mater., 2021, 11(1): 2002704.
doi: 10.1002/aenm.v11.1 URL |
[4] |
Dou X W, Hasa I, Saurel D, Vaalma C, Wu L M, Buchholz D, Bresser D, Komaba S, Passerini S. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry[J]. Mater. Today, 2019, 23: 87-104.
doi: 10.1016/j.mattod.2018.12.040 URL |
[5] |
Oberlin A, Terriere G. Graphitization studies of anthracites by high resolution electron microscopy[J]. Carbon, 1975, 13(5): 367-376.
doi: 10.1016/0008-6223(75)90004-4 URL |
[6] | Marsh H, Reinoso F R. Activated carbon[M]. Amsterdam: Elsevier, 2006. |
[7] |
Qiu S, Xiao L F, Sushko M L, Han K S, Shao Y Y, Yan M Y, Liang X M, Mai L Q, Feng J W, Cao Y L, Ai X P, Yang H X, Liu J. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv. Energy Mater., 2017, 7(17): 1700403.
doi: 10.1002/aenm.v7.17 URL |
[8] |
Sun D, Luo B, Wang H Y, Tang Y G, Ji X B, Wang L Z. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency[J]. Nano Energy, 2019, 64: 103937.
doi: 10.1016/j.nanoen.2019.103937 URL |
[9] |
Sun N, Guan Z R X, Liu Y W, Cao Y L, Zhu Q Z, Liu H, Wang Z X, Zhang P, Xu B. Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons[J]. Adv. Energy Mater., 2019, 9(32): 1901351.
doi: 10.1002/aenm.v9.32 URL |
[10] |
Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. J. Electrochem. Soc., 2000, 147(4): 1271.
doi: 10.1149/1.1393348 URL |
[11] |
Bommier C, Surta T W, Dolgos M, Ji X L. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Lett., 2015, 15 (9): 5888-5892.
doi: 10.1021/acs.nanolett.5b01969 pmid: 26241159 |
[12] |
Ding J, Wang H L, Li Z, Kohandehghan A, Cui K, Xu Z W, Zahiri B, Tan X H, Lotfabad E M, Olsen B C, Mitlin D. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7 (12): 11004-11015.
doi: 10.1021/nn404640c pmid: 24191681 |
[13] |
Lotfabad E M, Ding J, Cui K, Kohandehghan A, Kalisvaart W P, Hazelton M, Mitlin D. High-density sodium and lithium ion battery anodes from banana peels[J]. ACS Nano, 2014, 8(7): 7115-7129.
doi: 10.1021/nn502045y pmid: 24897543 |
[14] |
Yun Y S, Park K Y, Lee B, Cho S Y, Park Y U, Hong S J, Kim B H, Gwon H, Kim H, Lee S, Park Y W, Jin H J, Kang K. Sodium-ion storage in pyroprotein-based carbon nanoplates[J]. Adv. Mater., 2015, 27 (43): 6914-6921.
doi: 10.1002/adma.201502303 |
[15] |
Cao Y L, Xiao L F, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z M, Saraf L V, Yang Z G, Liu J. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Lett., 2012, 12 (7): 3783-3787.
doi: 10.1021/nl3016957 pmid: 22686335 |
[16] | Yang H, Xu R, Yu Y. A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial coulombic efficiency: free-standing porous carbon nanofiber film derived from bacterial cellulose[J]. Energy Storage Mater., 2019, 22: 105-112. |
[17] |
Li Z F, Bommier C, Sen Chong Z, Jian Z L, Surta T W, Wang X F, Xing Z Y, Neuefeind J C, Stickle W F, Dolgos M, Greaney P A, Ji X L. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping[J]. Adv. Energy Mater., 2017, 7(18): 1602894.
doi: 10.1002/aenm.v7.18 URL |
[18] |
Lu H Y, Ai F X, Jia Y L, Tang C Y, Zhang X H, Huang Y H, Yang H X, Cao Y L. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method[J]. Small, 2018, 14(39): 1802694.
doi: 10.1002/smll.v14.39 URL |
[19] |
Sun F, Wang H, Qu Z B, Wang K F, Wang L J, Gao J H, Gao J M, Liu S Q, Lu Y F. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: synergistic enhancement of adsorption and intercalation mechanisms[J]. Adv. Energy Mater., 2021, 11(1): 2002981.
doi: 10.1002/aenm.v11.1 URL |
[20] |
Li Y M, Hu Y S, Titirici M M, Chen L Q, Huang X J. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Adv. Energy Mater., 2016, 6(18): 1600659.
doi: 10.1002/aenm.v6.18 URL |
[21] |
Bin D S, Li Y M, Sun Y G, Duan S Y, Lu Y X, Ma J M, Cao A M, Hu Y S, Wan L J. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode[J]. Adv. Energy Mater., 2018, 8(26): 1800855.
doi: 10.1002/aenm.v8.26 URL |
[22] |
Au H, Alptekin H, Jensen A C S, Olsson E, O'Keefe C A, Smith T, Crespo-Ribadeneyra M, Headen T F, Grey C P, Cai Q, Drew A J, Titirici M M. A revised mechanistic model for sodium insertion in hard carbons[J]. Energy Environ. Sci., 2020, 13(10): 3469-3479.
doi: 10.1039/D0EE01363C URL |
[23] |
Xia J L, Yan D, Guo L P, Dong X L, Li W C, Lu A H. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Adv. Mater., 2020, 32(21): 2000447.
doi: 10.1002/adma.v32.21 URL |
[24] | Zhang S W, Lv W, Luo C, You C H, Zhang J, Pan Z Z, Kang F Y, Yang Q H. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries[J]. Energy Storage Mater., 2016, 3: 18-23. |
[25] |
Morikawa Y, Nishimura S, Hashimoto R, Ohnuma M, Yamada A. Mechanism of sodium storage in hard carbon: an X-ray scattering analysis[J]. Adv. Energy Mater., 2020, 10(3): 1903176.
doi: 10.1002/aenm.v10.3 URL |
[26] |
Alvin S, Yoon D, Chandra C, Cahyadi H S, Park J H, Chang W, Chung K Y, Kim J. Revealing sodium ion storage mechanism in hard carbon[J]. Carbon, 2019, 145: 67-81.
doi: 10.1016/j.carbon.2018.12.112 |
[27] |
Xiao L F, Cao Y L, Henderson W A, Sushko M L, Shao Y Y, Xiao J, Wang W, Engelhard M H, Nie Z M, Liu J. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries[J]. Nano Energy, 2016, 19: 279-288.
doi: 10.1016/j.nanoen.2015.10.034 URL |
[28] |
Gotoh K, Ishikawa T, Shimadzu S, Yabuuchi N, Komaba S, Takeda K, Goto A, Deguchi K, Ohki S, Hashi K, Shimizu T, Ishida H. NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery[J]. J. Power Sources, 2013, 225: 137-140.
doi: 10.1016/j.jpowsour.2012.10.025 URL |
[29] |
Wahid M, Gawli Y, Puthusseri D, Kumar A, Shelke M V, Ogale S. Nutty carbon: morphology replicating hard carbon from walnut shell for Na ion battery anode[J]. ACS Omega, 2017, 2(7): 3601-3609.
doi: 10.1021/acsomega.7b00633 pmid: 30023698 |
[30] |
Li H B, Shen F, Luo W, Dai J Q, Han X G, Chen Y N, Yao Y G, Zhu H L, Fu K, Hitz E, Hu L B. Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery[J]. ACS Appl. Mater. Interfaces, 2016, 8(3): 2204-2210.
doi: 10.1021/acsami.5b10875 URL |
[31] |
Zhu Z Y, Liang F, Zhou Z R, Zeng X Y, Wang D, Dong P, Zhao J B, Sun S G, Zhang Y J, Li X. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries[J]. J. Mater. Chem. A, 2018, 6(4): 1513-1522.
doi: 10.1039/C7TA07951F URL |
[32] |
Wang P Z, Zhu X S, Wang Q Q, Xu X, Zhou X S, Bao J C. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries[J]. J. Mater. Chem. A, 2017, 5(12): 5761-5769.
doi: 10.1039/C7TA00639J URL |
[33] |
Dou X W, Hasa I, Hekmatfar M, Diemant T, Behm R J, Buchholz D, Passerini S. Pectin, hemicellulose, or lignin? impact of the biowaste source on the performance of hard carbons for sodium-ion batteries[J]. ChemSusChem, 2017, 10(12): 2668-2676.
doi: 10.1002/cssc.201700628 pmid: 28425668 |
[34] |
Gibertini E, Liberale F, Dossi C, Binda G, Mattioli B, Bettinetti R, Maspero A, Fiore M, Ruffo R, Magagnin L. Algae-derived hard carbon anodes for Na-ion batteries[J]. J. Appl. Electrochem., 2021, 51(12): 1665-1673.
doi: 10.1007/s10800-021-01609-2 |
[35] |
Zhang Y J, Li X, Dong P, Wu G, Xiao J, Zeng X Y, Zhang Y J, Sun X L. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(49): 42796-42803.
doi: 10.1021/acsami.8b13160 URL |
[36] |
Cao L Y, Hui W L, Xu Z W, Huang J F, Zheng P, Li J Y, Sun Q Q. Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries[J]. J. Alloys Compd., 2017, 695: 632-637.
doi: 10.1016/j.jallcom.2016.11.135 URL |
[37] |
Liu P, Li Y M, Hu Y S, Li H, Chen L Q, Huang X J. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries[J]. J. Mater. Chem. A, 2016, 4(34): 13046-13052.
doi: 10.1039/C6TA04877C URL |
[38] |
Damodar D, Ghosh S, Rani M U, Martha S K, Deshpande A S. Hard carbon derived from sepals of Palmyra palm fruit calyx as an anode for sodium-ion batteries[J]. J. Power Sources, 2019, 438: 227008.
doi: 10.1016/j.jpowsour.2019.227008 URL |
[39] |
Zhang B A, Ghimbeu C M, Laberty C, Vix-Guterl C, Tarascon J M. Correlation between microstructure and Na storage behavior in hard carbon[J]. Adv. Energy Mater., 2016, 6(1): 1501588.
doi: 10.1002/aenm.v6.1 URL |
[40] |
Chen T Q, Pan L K, Lu T, Fu C L, Chua D H C, Sun Z. Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries[J]. J. Mater. Chem. A, 2014, 2(5): 1263-1267.
doi: 10.1039/C3TA14037G URL |
[41] |
Zhu J D, Chen C, Lu Y, Ge Y Q, Jiang H, Fu K, Zhang X W. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries[J]. Carbon, 2015, 94: 189-195.
doi: 10.1016/j.carbon.2015.06.076 URL |
[42] |
Zhang N, Liu Q, Chen W L, Wan M, Li X C, Wang L L, Xue L H, Zhang W X. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. J. Power Sources, 2018, 378: 331-337.
doi: 10.1016/j.jpowsour.2017.12.054 URL |
[43] |
Yu Z L, Xin S, You Y, Yu L, Lin Y, Xu D W, Qiao C, Huang Z H, Yang N, Yu S H, Goodenough J B. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage[J]. J. Am. Chem. Soc., 2016, 138(45): 14915-14922.
doi: 10.1021/jacs.6b06673 URL |
[44] |
Huang S F, Li Z P, Wang B, Zhang J J, Peng Z Q, Qi R J, Wang J, Zhao Y F. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage[J]. Adv. Funct. Mater., 2018, 28(10): 1706294.
doi: 10.1002/adfm.v28.10 URL |
[45] |
Zhao X, Ding Y, Xu Q, Yu X, Liu Y, Shen H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: a general method[J]. Adv. Energy Mater., 2019, 9(10): 1803648.
doi: 10.1002/aenm.v9.10 URL |
[46] |
Lin X Y, Liu Y Z, Tan H, Zhang B. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage[J]. Carbon, 2020, 157: 316-323.
doi: 10.1016/j.carbon.2019.10.045 URL |
[47] |
Hou B H, Wang Y Y, Ning Q L, Li W H, Xi X T, Yang X, Liang H J, Feng X, Wu X L. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: superb room/low-temperature sodium storage and working mechanism[J]. Adv. Mater., 2019, 31(40): 1903125.
doi: 10.1002/adma.v31.40 URL |
[48] |
Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim J, Komaba S. Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries[J]. J. Mater. Chem. A, 2018, 6(35): 16844-16848.
doi: 10.1039/C8TA05203D URL |
[49] |
Lu Y X, Zhao C L, Qi X G, Qi Y R, Li H, Huang X J, Chen L Q, Hu Y S. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Adv. Energy Mater., 2018, 8(27): 1800108.
doi: 10.1002/aenm.v8.27 URL |
[50] |
Li Y Q, Lu Y X, Meng Q S, Jensen A C S, Zhang Q Q, Zhang Q H, Tong Y X, Qi Y R, Gu L, Titirici M M, Hu Y S. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Adv. Energy Mater., 2019, 9(48): 1902852.
doi: 10.1002/aenm.v9.48 URL |
[51] |
Meng Q S, Lu Y X, Ding F X, Zhang Q Q, Chen L Q, Hu Y S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Lett., 2019, 4(11): 2608-2612.
doi: 10.1021/acsenergylett.9b01900 URL |
[52] |
Kamiyama A, Kubota K, Nakano T, Fujimura S, Shiraishi S, Tsukada H, Komaba S. High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery[J]. ACS Appl. Energy Mater., 2020, 3(1): 135-140.
doi: 10.1021/acsaem.9b01972 URL |
[53] |
Kamiyama A, Kubota K, Igarashi D, Youn Y, Tateyama Y, Ando H, Gotoh K, Komaba S. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery[J]. Angew. Chem. Int. Edit., 2021, 60(10): 5114-5120.
doi: 10.1002/anie.v60.10 URL |
[54] | Li Q, Liu X S, Tao Y, Huang J X, Zhang J, Yang C P, Zhang Y B, Zhang S W, Jia Y R, Lin Q W, Xiang Y X, Cheng J, Lv W, Kang F Y, Yang Y, Yang Q H. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. Natl. Sci. Rev., 2022, 9(8): DOI: 10.1093/nsr/nwac084. |
[55] |
Shao Y Y, Xiao J, Wang W, Engelhard M, Chen X L, Nie Z M, Gu M, Saraf L V, Exarhos G, Zhang J G, Liu J. Surface-driven sodium ion energy storage in nanocellular carbon foams[J]. Nano Lett., 2013, 13(8): 3909-3914.
doi: 10.1021/nl401995a pmid: 23879207 |
[56] |
Wu F, Zhang M H, Bai Y, Wang X R, Dong R Q, Wu C. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(13): 12554-12561.
doi: 10.1021/acsami.9b01419 URL |
[57] |
Wu F, Dong R Q, Bai Y, Li Y, Chen G H, Wang Z H, Wu C. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(25): 21335-21342.
doi: 10.1021/acsami.8b05618 URL |
[58] |
Li Y, Yuan Y F, Bai Y, Liu Y C, Wang Z H, Li L M, Wu F, Amine K, Wu C, Lu J. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes[J]. Adv. Energy Mater., 2018, 8(18): 1702781.
doi: 10.1002/aenm.v8.18 URL |
[59] |
Hankel M, Ye D L, Wang L Z, Searles D J. Lithium and sodium storage on graphitic carbon nitride[J]. J. Phys. Chem. C, 2015, 119(38): 21921-21927.
doi: 10.1021/acs.jpcc.5b07572 URL |
[60] |
Chen C, Lu Y, Ge Y Q, Zhu J D, Jiang H, Li Y Q, Hu Y, Zhang X W. Synthesis of nitrogen-doped electrospun carbon nanofibers as anode material for high-performance sodium-ion batteries[J]. Energy Technol., 2016, 4(11): 1440-1449.
doi: 10.1002/ente.v4.11 URL |
[61] |
Sun X Z, Wang C L, Gong Y, Gu L, Chen Q W, Yu Y. A flexible sulfur-enriched nitrogen doped multichannel hollow carbon nanofibers film for high performance sodium storage[J]. Small, 2018, 14(35): 1802218.
doi: 10.1002/smll.v14.35 URL |
[62] |
Yang J Q, Zhou X L, Wu D H, Zhao X D, Zhou Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Adv. Mater., 2017, 29(6): 1604108.
doi: 10.1002/adma.v29.6 URL |
[63] |
Guo M Q, Huang J Q, Kong X Y, Peng H J, Shut H, Qian F Y, Zhu L, Zhu W C, Zhang Q. Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries[J]. New Carbon Mater., 2016, 31(3): 352-362.
doi: 10.1016/S1872-5805(16)60019-7 URL |
[64] |
Xie F, Xu Z, Jensen A C S, Au H, Lu Y X, Araullo-Peters V, Drew A J, Hu Y S, Titirici M M. Hard-soft carbon composite anodes with synergistic sodium storage performance[J]. Adv. Funct. Mater., 2019, 29(24): 1901072.
doi: 10.1002/adfm.v29.24 URL |
[65] |
Suo L Y, Zhu J H, Shen X Y, Wang Y Z, Han X, Chen Z Q, Li Y, Liu Y R, Wang D, Ma Y W. Hard carbon spheres interconnected by carbon nanotubes as high-performance anodes for sodium-ion batteries[J]. Carbon, 2019, 151: 1-9.
doi: 10.1016/j.carbon.2019.05.030 URL |
[66] |
Sun N, Guan Y B, Liu Y T, Zhu Q Z, Shen J R, Liu H, Zhou S Q, Xu B. Facile synthesis of free-standing, flexible hard carbon anode for high-performance sodium ion batteries using graphene as a multi-functional binder[J]. Carbon, 2018, 137: 475-483.
doi: 10.1016/j.carbon.2018.05.056 URL |
[67] |
Huang Y X, Zhao L Z, Li L, Xie M, Wu F, Chen R J. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application[J]. Adv. Mater., 2019, 31(21): 1808393.
doi: 10.1002/adma.v31.21 URL |
[68] |
Ponrouch A, Marchante E, Courty M, Tarascon J M, Palacín M R. In search of an optimized electrolyte for Na-ion batteries[J]. Energy Environ. Sci., 2012, 5(9): 8572-8583.
doi: 10.1039/c2ee22258b URL |
[69] |
Li K K, Zhang J, Lin D M, Wang D W, Li B H, Lv W, Sun S, He Y B, Kang F Y, Yang Q H, Zhou L M, Zhang T Y. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes[J]. Nat. Commun., 2019, 10(1): 725.
doi: 10.1038/s41467-019-08506-5 pmid: 30760713 |
[70] |
Dong R Q, Zheng L M, Bai Y, Ni Q, Li Y, Wu F, Ren H X, Wu C. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes[J]. Adv. Mater., 2021, 33(36): 2008810.
doi: 10.1002/adma.v33.36 URL |
[71] |
Kumar H, Detsi E, Abraham D P, Shenoy V B. Fundamental mechanisms of solvent decomposition involved in solid-electrolyte interphase formation in sodium ion batteries[J]. Chem. Mater., 2016, 28(24): 8930-8941.
doi: 10.1021/acs.chemmater.6b03403 URL |
[72] |
Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries[J]. ACS Appl. Mater. Interfaces, 2011, 3(11): 4165-4168.
doi: 10.1021/am200973k URL |
[73] |
Dahbi M, Nakano T, Yabuuchi N, Fujimura S, Chihara K, Kubota K, Son J Y, Cui Y T, Oji H, Komaba S. Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and the surface layer of hard carbon for sodium-ion batteries[J]. ChemElectroChem, 2016, 3 (11): 1856-1867.
doi: 10.1002/celc.v3.11 URL |
[74] |
Chen C, Wu M Q, Liu J H, Xu Z Q, Zaghib K, Wang Y S. Effects of ester-based electrolyte composition and salt concentration on the Na-storage stability of hard carbon anodes[J]. J. Power Sources, 2020, 471: 228455.
doi: 10.1016/j.jpowsour.2020.228455 URL |
[75] |
Eshetu G G, Diemant T, Hekmatfar M, Grugeon S, Behm R J, Laruelle S, Armand M, Passerini S. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries[J]. Nano Energy, 2019, 55: 327-340.
doi: 10.1016/j.nanoen.2018.10.040 URL |
[76] | Patra J, Huang H T, Xue W J, Wang C, Helal A S, Li J, Chang J K. Moderately concentrated electrolyte improves solid-electrolyte interphase and sodium storage performance of hard carbon[J]. Energy Storage Mater., 2019, 16: 146-154. |
[77] |
Takada K, Yamada Y, Watanabe E, Wang J H, Sodeyama K, Tateyama Y, Hirata K, Kawase T, Yamada A. Unusual passivation ability of superconcentrated electrolytes toward hard carbon negative electrodes in sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(39): 33802-33809.
doi: 10.1021/acsami.7b08414 URL |
[78] |
Li Y Q, Yang Y, Lu Y X, Zhou Q, Qi X G, Meng Q S, Rong X H, Chen L Q, Hu Y S. Ultralow-concentration electrolyte for Na-ion batteries[J]. ACS Energy Lett., 2020, 5(4): 1156-1158.
doi: 10.1021/acsenergylett.0c00337 URL |
[79] |
Tang J L, Kye D K, Pol V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. J. Power Sources, 2018, 396: 476-482.
doi: 10.1016/j.jpowsour.2018.06.067 URL |
[80] |
Moeez I, Jung H G, Lim H D, Chung K Y. Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(44): 41394-41401.
doi: 10.1021/acsami.9b14381 URL |
[81] |
Liu X X, Tan Y C, Liu T C, Wang W Y, Li C H, Lu J, Sun Y M. A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries[J]. Adv. Funct. Mater., 2019, 29(50): 1903795.
doi: 10.1002/adfm.v29.50 URL |
[82] |
Liu M C, Zhang J Y, Guo S H, Wang B, Shen Y F, Ai X P, Yang H X, Qian J F. Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries[J]. ACS Appl. Mater. Interfaces, 2020, 12(15): 17620-17627.
doi: 10.1021/acsami.0c02230 URL |
[83] |
Niu Y B, Guo Y J, Yin Y X, Zhang S Y, Wang T, Wang P, Xin S, Guo Y G. High-efficiency cathode sodium compensation for sodium-ion batteries[J]. Adv. Mater., 2020, 32(33): 2001419.
doi: 10.1002/adma.v32.33 URL |
[84] |
Sun C K, Zhang X, Li C, Wang K, Sun X Z, Liu F Y, Wu Z S, Ma Y W. A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density[J]. J. Energy Chem., 2022, 64: 442-450.
doi: 10.1016/j.jechem.2021.05.010 |
[85] |
Sun C K, Zhang X, Li C, Wang K, Sun X Z, Ma Y W. A presodiation strategy with high efficiency by utilizing low-price and eco-friendly Na2CO3 as the sacrificial salt towards high-performance pouch sodium-ion capacitors[J]. J. Power Sources, 2021, 515: 230628.
doi: 10.1016/j.jpowsour.2021.230628 URL |
[86] |
Arnaiz M, Shanmukaraj D, Carriazo D, Bhattacharjya D, Villaverde A, Armand M, Ajuria J. A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies[J]. Energy Environ. Sci., 2020, 13(8): 2441-2449.
doi: 10.1039/D0EE00351D URL |
[1] | 范佳琪, 宋焕巧, 安佳莹, 阿依达娜·阿曼太, 陈默. 碳限域Li3VO4纳米材料的制备及其储锂性能[J]. 电化学(中英文), 2023, 29(11): 211203-. |
[2] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[3] | 兰道云, 屈小峰, 唐宇婷, 刘丽英, 刘军. 3.9 V电化学稳定窗口的乙酸盐电解液用于低成本高性能的水系钠离子电池[J]. 电化学(中英文), 2022, 28(1): 2102231-. |
[4] | 李姝谨, 曹志康, 王文凯, 张晓菡, 向兴德. 硫酸盐功能电解液增强水系钠离子电池NaTi2(PO4)3/C负极材料电化学性能的研究[J]. 电化学(中英文), 2021, 27(6): 605-613. |
[5] | 梁振浪, 杨耀, 李豪, 刘丽英, 施志聪. 基于不同前驱体制备的硬碳负极材料的储锂性能[J]. 电化学(中英文), 2021, 27(2): 177-184. |
[6] | 吴凯. Na3V2(PO4)2O2F的合成及其在钠离子电池中的应用[J]. 电化学(中英文), 2021, 27(1): 56-62. |
[7] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[8] | 陈嘉卉, 钟晓斌, 何超, 王晓晓, 许清池, 李剑锋. 中空核壳结构Ni1.2Co0.8P@N-C钠离子电池负极材料的制备及拉曼研究[J]. 电化学(中英文), 2020, 26(3): 328-337. |
[9] | 李钊, 孙现众, 刘文杰, 张熊, 王凯, 马衍伟. 预嵌锂硬碳和软碳用于锂离子电容器负极的比较研究[J]. 电化学(中英文), 2019, 25(1): 122-136. |
[10] | 王凡凡, 刘晓斌, 陈龙, 陈程成, 刘永畅, 范丽珍. 室温钠离子电池关键材料研究进展[J]. 电化学(中英文), 2019, 25(1): 55-76. |
[11] | 孙梦雷, 张达奇, 冯金奎, 倪江锋. 钒基电极材料研究进展[J]. 电化学(中英文), 2019, 25(1): 45-54. |
[12] | 颜冲, 寇华日, 颜波, 刘晓静, 李德军, 李喜飞. Ni/Mn3O4/NiMn2O4@RGO空心微球负极的制备及其储钠性能[J]. 电化学(中英文), 2019, 25(1): 112-121. |
[13] | 廉思甜, 吕建帅, 于强, 胡光武, 陈卓, 周亮, 麦立强. 二氧化钛基钠离子电池负极材料研究进展[J]. 电化学(中英文), 2019, 25(1): 31-44. |
[14] | 夏永康, 顾明远, 杨红官, 于馨智, 鲁兵安. CVD 法制备三维石墨烯的电化学储能性能[J]. 电化学(中英文), 2019, 25(1): 89-103. |
[15] | 谢永纯,王成,蒋芳,杨洋,苏静,龙云飞,文衍宣. 钠锰比对NaxMnO2的性能和钠离子脱嵌过程的影响[J]. 电化学(中英文), 2018, 24(4): 375-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||