电化学(中英文) ›› 2023, Vol. 29 ›› Issue (8): 2208111. doi: 10.13208/j.electrochem.2208111
所属专题: “电子电镀和腐蚀”专题文章
翟悦晖a, 彭逸霄a, 洪延a,b, 陈苑明c, 周国云a,b, 何为c, 王朋举d, 陈先明e, 王翀a,b,*()
收稿日期:
2022-08-11
修回日期:
2022-10-17
接受日期:
2022-12-07
出版日期:
2023-08-28
发布日期:
2023-01-07
Yue-Hui Zhaia, Yi-Xiao Penga, Yan Honga,b, Yuan-Ming Chenc, Guo-Yun Zhoua,b, Wei Hec, Peng-Ju Wangd, Xian-Ming Chene, Chong Wanga,b,*()
Received:
2022-08-11
Revised:
2022-10-17
Accepted:
2022-12-07
Published:
2023-08-28
Online:
2023-01-07
Contact:
*Tel: (86-28)83201448, E-mail: wangchong@uestc.edu.cn
摘要:
铜互连是保障电子设备的功能、性能、能效、可靠性以及制备良品率至关重要的一环。铜互连常通过在酸性镀铜液电镀铜实现,并广泛用于芯片、封装基材和印制电路板中。其中,有机添加剂在调控铜沉积完成沟槽填充、微孔填充以形成精密线路和实现层间互连方面起着决定性作用。添加剂主要由光亮剂、抑制剂和整平剂三组分组成,在恰当的浓度配比下,添加剂对于盲孔超级填充具有协同作用。目前,已报导的文献聚焦于代表性添加剂的超填充机理及其电化学行为,而对于添加剂的化学结构与制备方法鲜有深入研究。本文重点研究了各添加剂组分的制备工艺和快速电化学筛选方法,为电镀铜添加剂的未来发展提供理论指导。
翟悦晖, 彭逸霄, 洪延, 陈苑明, 周国云, 何为, 王朋举, 陈先明, 王翀. 铜互连电镀中有机添加剂的合成与分析[J]. 电化学(中英文), 2023, 29(8): 2208111.
Yue-Hui Zhai, Yi-Xiao Peng, Yan Hong, Yuan-Ming Chen, Guo-Yun Zhou, Wei He, Peng-Ju Wang, Xian-Ming Chen, Chong Wang. Synthesis and Evaluation of Organic Additives for Copper Electroplating of Interconnects[J]. Journal of Electrochemistry, 2023, 29(8): 2208111.
[1] | Wang C, Peng C, Xiang J, Chen Y M, He W, Su X H, Lu Y Y. Research and application of copper electroplating in interconnection of printed circuit board[J]. J. Electrochem., 2021, 27(03): 257-268. |
[2] | Bai R S. The past, present and future of copper electroplating (Part.2)[J]. Print. Circuit. Board. Inf., 2004, 1: 5-12. |
[3] | Bai R S. The past, present and future of copper electroplating (Part.1)[J]. Print. Circuit. Board. Inf., 2003, 6: 7-16. |
[4] | Liu R Z. Electroplating technology[M]: Beijing: Chemical Industry Press, 2008. |
[5] | Zhou S M. Metal electrodeposition: Principles and research methods[M]: Shanghai: Science and Technology Press, 1987. |
[6] | He W. Advanced technology of printed circuit and printed electronics[M], vol. 1. Beijing:Science and Technology Press, 2016. |
[7] | He W. Advanced technology of printed circuit and printed electronics[M], vol. 2. Beijing:Science and Technology Press, 2016. |
[8] |
Gallaway J W, Willey M J, West A C. Acceleration kinetics of PEG, PPG, and a triblock copolymer by SPS during copper electroplating[J]. J. Electrochem. Soc., 2009, 156(4): D146-D154.
doi: 10.1149/1.3078405 URL |
[9] |
Dow W P, Huang H S, Yen M Y, Huang H C. Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating[J]. J. Electrochem. Soc., 2005, 152(6): C425-C434.
doi: 10.1149/1.1901670 URL |
[10] | Wu Y C, Mao Z J, Wang C, Liu Y W, Chen S L, Cai W B. Advances in mechanistic understanding of additives for copper electroplating in high-end electronics manufacture[J]. Sci. China-Chem., 2021, 51(11): 1474-1488. |
[11] |
Huang Q, Baker-O'Neal B C, Parks C, Hopstaken M, Fluegel A, Emnet C, Arnold M, Mayer D. Leveler effect and oscillatory behavior during copper electroplating[J]. J. Electrochem. Soc., 2012, 159(9): D526-D531.
doi: 10.1149/2.020209jes URL |
[12] |
Kim S K, Josell D, Moffat T P. Electrodeposition of Cu in the PEI-PEG-Cl-SPS additive system - reduction of overfill bump formation during superfilling[J]. J. Electrochem. Soc., 2006, 153(9): C616-C622.
doi: 10.1149/1.2216356 URL |
[13] | Jiang C, Li M, Wang S, Li Y Y, Yu X X. Elimination the cmp defects for tsv process by optimizing the copper electrodeposition[C]// 18th International Conference on Electronic Packaging Technology (ICEPT). Harbin, China, Aug 16-19, 2017. |
[14] |
Zheng L, He W, Zhu K, Wang C, Wang S X, Hong Y, Chen Y M, Zhou G Y, Miao H, Zhou J Q. Investigation of poly (1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochim. Acta, 2018, 283: 560-567.
doi: 10.1016/j.electacta.2018.06.132 URL |
[15] |
Xiang J, Wang S X, Li J, He W, Wang C, Chen Y M, Zhang H W, Miao H, Zhou J Q, Jin X F. Electrochemical factors of levelers on plating uniformity of through-holes: Simulation and experiments[J]. J. Electrochem. Soc., 2018, 165(9): E359-E365.
doi: 10.1149/2.0331809jes URL |
[16] |
Zheng L, Wang C, Cai D A, Huang Y Z, Adi K, Hong Y, Chen Y M, Zhou G Y, Armini S, De Gendt S, Wang S X, He W. Hydroquinone oriented growth control to achieve high-quality copper coating at high rate for electronics interconnection[J]. J. Taiwan Inst. Chem. Eng., 2020, 112: 130-136.
doi: 10.1016/j.jtice.2020.07.004 URL |
[17] |
Lai Z Q, Wang S X, Wang C, Hong Y, Chen Y M, Zhang H W, Zhou G Y, He W, Ai K H, Peng Y Q. Computational analysis and experimental evidence of two typical levelers for acid copper electroplating[J]. Electrochim. Acta, 2018, 273: 318-326.
doi: 10.1016/j.electacta.2018.04.062 URL |
[18] |
Andricacos P C, Uzoh C, Dukovic J O, Horkans J, Deligianni H. Damascene copper electroplating for chip interconnections[J]. IBM J. Res. Dev., 1998, 42(5): 567-574.
doi: 10.1147/rd.425.0567 URL |
[19] |
Zhu K, Wang C, Wang J Z, Hong Y, Chen Y M, He W, Zhou J Q, Miao H, Chen Q G. Convection-dependent competitive adsorption between SPS and EO/PO on copper surface for accelerating trench filling[J]. J. Electrochem. Soc., 2019, 166(4): D93-D98.
doi: 10.1149/2.0491904jes URL |
[20] | Liu X Y, Liu H Y, Yu D Q, Wu X L, Chen W L. Development of micropackage technology for through silicon via (TSV) interposer[J]. Electron. Packag., 2015, 15(08): 1-8. |
[21] |
Chen Y M, He W, Chen X M, Wang C, Tao Z H, Wang S X, Zhou G Y, Moshrefi-Torbati M. Plating uniformity of bottom-up copper pillars and patterns for IC substrates with additive-assisted electrodeposition[J]. Electrochim. Acta, 2014, 120: 293-301.
doi: 10.1016/j.electacta.2013.12.112 URL |
[22] |
Ji L X, Wang S X, Wang C, Chen G Q, Chen Y M, He W, Tan Z. Improved uniformity of conformal through-hole copper electrodeposition by revision of plating cell configuration[J]. J. Electrochem. Soc., 2015, 162(12): D575-D583.
doi: 10.1149/2.0761512jes URL |
[23] |
Ji L X, Wang C, Wang S X, Zhu K, He W, Xiao D J. Multi-physics coupling aid uniformity improvement in pattern plating[J]. Circuit World, 2016, 42(2): 69-76.
doi: 10.1108/CW-05-2015-0023 URL |
[24] |
Ahmed A M M, El Adl A F, Seleim S M. Some organic compounds as accelerator and inhibitor for electroplating process[J]. Asian J. Chem., 2013, 25(12): 6700-6706.
doi: 10.14233/ajchem URL |
[25] |
Moriyama M, Konishi S, Tsukimoto S, Murakami M. Effect of organic additives on formation and growth behavior of micro-void in electroplating copper films[J]. Mater. Trans., 2004, 45(11): 3172-3176.
doi: 10.2320/matertrans.45.3172 URL |
[26] |
Ahmed A M M, Abdel-Rahman A A H, El Adl A F. Electroplating of copper in the presence of 5,6-dihydropyrimidine-2-(1h)-thione, 2-methylthiopyrimidine-4-(1h)-one, 2-thiopyrimidine-4-(1h)-ones, and 2,4-pyrimidine(1h,3h)-dione derivatives as organic additives[J]. J. Dispersion Sci. Technol., 2011, 32(3): 453-463.
doi: 10.1080/01932690903232279 URL |
[27] |
Broekmann P, Fluegel A, Emnet C, Arnold M, Roeger-Goepfert C, Wagner A, Hai N T M, Mayer D. Classification of suppressor additives based on synergistic and antagonistic ensemble effects[J]. Electrochim. Acta, 2011, 56(13): 4724-4734.
doi: 10.1016/j.electacta.2011.03.015 URL |
[28] |
Willey M J, Emekli U, West A C. Uniformity effects when electrodepositing Cu onto resistive substrates in the presence of organic additives[J]. J. Electrochem. Soc., 2008, 155(4): D302-D307.
doi: 10.1149/1.2837857 URL |
[29] |
Moffat T P, Wheeler D, Kim S K, Josell D. Curvature enhanced adsorbate coverage mechanism for bottom-up superfilling and bump control in damascene processing[J]. Electrochim. Acta, 2007, 53(1): 145-154.
doi: 10.1016/j.electacta.2007.03.025 URL |
[30] |
Dow W P, Liu D H, Lu C W, Chen C H, Yan J J, Huang S M. Through-hole filling by copper electroplating using a single organic additive[J]. Electrochem. Solid State Lett., 2011, 14(1): D13-D15.
doi: 10.1149/1.3511757 URL |
[31] |
Basol B M, West A C. Study on mechanically induced current suppression and super filling mechanisms[J]. Electrochem. Solid State Lett., 2006, 9(4): C77-C80.
doi: 10.1149/1.2173191 URL |
[32] |
Jin Y, Sui Y F, Wen L, Ye F M, Sun M, Wang Q M. Competitive adsorption of PEG and SPS on copper surface in acidic electrolyte containing Cl[J]. J. Electrochem. Soc., 2013, 160(1): D20-D27.
doi: 10.1149/2.021302jes URL |
[33] |
Chrzanowska A, Mroczka R, Florek M. Effect of Interaction between dodecyltrimethylammonium chloride (DTAC) and bis(3-sulphopropyl) disulphide (SPS) on the morphology of electrodeposited copper[J]. Electrochim. Acta, 2013, 106: 49-62.
doi: 10.1016/j.electacta.2013.05.061 URL |
[34] |
Yoon Y, Kim M J, Kim J J. Machine learning to electrochemistry: Analysis of polymers and halide ions in a copper electrolyte[J]. Electrochim. Acta, 2021, 399: 139424.
doi: 10.1016/j.electacta.2021.139424 URL |
[35] |
Schmidt R, Bandas C D, Gewirth A A, Knaup J M. The adsorption structure of polyethylene imine on copper surfaces for electrodeposition[J]. Phys. Status Solidi-Rapid Res. Lett., 2021, 15(11): 2100351.
doi: 10.1002/pssr.v15.11 URL |
[36] |
Willey M J, West A C. Microfluidic studies of adsorption and desorption of polyethylene glycol during copper electrodeposition[J]. J. Electrochem. Soc., 2006, 153(10): C728-C734.
doi: 10.1149/1.2335587 URL |
[37] |
Moreno-Garcia P, Grimaudo V, Riedo A, Tulej M, Neuland M B, Wurz P, Broekmann P. Towards structural analysis of polymeric contaminants in electrodeposited Cu films[J]. Electrochim. Acta, 2016, 199: 394-402.
doi: 10.1016/j.electacta.2016.03.123 URL |
[38] |
Ji L X, Su S D, Nie H X, Wang S X, He W, Ai K H, Li Q H. Mechanism analysis of microvia filling based on multiphysics coupling[J]. Circuit World, 2018, 44(2): 60-68.
doi: 10.1108/CW-06-2017-0029 URL |
[39] |
Zhu K, Wang C, Wang S X, Chen Y M, Zhou G Y, Hong Y, He W, Zhou J Q, Miao H, Wen Z S. Communication-localized accelerator pre-adsorption to speed up copper electroplating microvia filling[J]. J. Electrochem. Soc., 2019, 166(10): D467-D469.
doi: 10.1149/2.0041912jes URL |
[40] | Zhu D. New development of hot markets in Japan's PCB industry in 2021 (1)[J]. Print. Circuit. Inf., 2022, 30(05): 1-6. |
[41] | Zhu D. New development of hot markets in Japan's PCB industry in 2021 (2)[J]. Print. Circuit. Inf., 2022, 30(06): 1-6. |
[42] |
Feng Z V, Li X, Gewirth A A. Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced raman study[J]. J. Phys. Chem. B, 2003, 107(35): 9415-9423.
doi: 10.1021/jp034875m URL |
[43] |
Yin L, Liu Z H, Yang Z P, Wang Z L, Shingubara S. Effect of PEG molecular weight on bottom-up filling of copper electrodeposition for pcb interconnects[J]. Trans. Inst. Metal Finish., 2010, 88(3): 149-153.
doi: 10.1179/174591910X12692711390390 URL |
[44] |
Ren S, Lei Z, Wang Z. Investigation of suppressor polyethylene glycol dodecyl ether on electroplated Cu filling by electrochemical method[J]. Trans. Inst. Metal Finish., 2015, 93(4): 190-195.
doi: 10.1179/0020296715Z.000000000251 URL |
[45] |
Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm F R, Frey H. Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: Synthesis, novel polymer architectures, and bioconjugation[J]. Chem. Rev., 2016, 116(4): 2170-2243.
doi: 10.1021/acs.chemrev.5b00441 pmid: 26713458 |
[46] | Alain D. Anionic ring-opening polymerization of epoxides and related nucleophilic polymerization processes. In: Penczek S, Grubbs R (Eds). Ring-Opening Polymerization and Special Polymerization Processes, 1 Edn[M], vol. 4. London: Elsevier Science, 2016. 117-140 |
[47] |
Billouard C, Carlotti S, Desbois P, Deffieux A. "Controlled" high-speed anionic polymerization of propylene oxide initiated by alkali metal alkoxide/trialkylaluminum systems[J]. Macromolecules, 2004, 37(11): 4038-4043.
doi: 10.1021/ma035768t URL |
[48] | Sakakibara K, Nakano K, Nozaki K. Regio-controlled ring-opening polymerization of perfluoroalkyl-substituted epoxides[J]. Chem. Commun., 2006, (31): 3334-3336. |
[49] | Michael C, Austin T. Polyol purification process: American, US4535189[P]. 1985-8-13 |
[50] | Sun J J. Quantitative analysis of additive concentration in plating solutions based on cyclic voltammetric dissolution. In: Sun S G (Eds). Fundamentals and Methodologies of Electrochemical Measurement[M]: Xiamen: Xiamen University, 2021. 102-106 |
[51] |
Tao Z H, Liu G T, Li Y X, Su H. Electrochemical and analytical study of electroplating additive in copper plating solution for microvia filling[J]. Circuit World, 2019, 45(3): 124-131.
doi: 10.1108/CW-07-2018-0052 URL |
[52] |
Chen T C, Tsai Y L, Hsu C F, Dow W P, Hashimoto Y. Effects of brighteners in a copper plating bath on throwing power and thermal reliability of plated through holes[J]. Electrochim. Acta, 2016, 212: 572-582.
doi: 10.1016/j.electacta.2016.07.007 URL |
[53] |
Luo J Y, Li Z, Shi M H, Chen J J, Hao Z F, Hez J. Effects of accelerator alkyl chain length on the microvia filling performance in copper superconformal electroplating[J]. J. Electrochem. Soc., 2019, 166(4): D104-D112.
doi: 10.1149/2.0571904jes URL |
[54] |
Schmitt K G, Schmidt R, Gaida J, Gewirth A A. Chain length variation to probe the mechanism of accelerator additives in copper electrodeposition[J]. Phys. Chem. Chem. Phys., 2019, 21(30): 16838-16847.
doi: 10.1039/c9cp00839j pmid: 31334710 |
[55] | Li Z, Tan B Z, Shi M H, Luo J Y, Hao Z F, He J, Yang G N, Cui C Q. Bis-(sodium sulfoethyl)-disulfide: A promising accelerator for super-conformal copper electrodeposition with wide operating concentration ranges[J]. J. Electrochem. Soc., 2020, 167(4). |
[56] |
Zhao S H, Pang K N, Huang Y N, Xiao N. Special electrochemical behaviour of sodium thiazolinyl-dithiopropane sulphonate during microvia filling[J]. Trans. Inst. Metal Finish., 2019, 97(4): 217-224.
doi: 10.1080/00202967.2019.1636581 URL |
[57] | Yang Y, Zhang M, Liu H Y, Gan J Q, Qu J H. Synthesis of the anionic surfactant sodium polydithiodipropane sulfonate[J]. Guangzhou Chem., 2013, 38(1): 7-13. |
[58] | Lu J L, Jiang H L, Hang K, Hang D L. Synthesizing high-purity sodium polydisulfide dipropane sulfonate: China, CN 112142631B[P]. 2020-12-29 |
[59] | Song C Y, Yang L, Zhou L P, Zhang Z L, Wang H P, Liu S J, Wang J, Zhang X L. Novel synthesizing of sodium polydisulfide dipropane sulfonate: China, CN 101519369B[P]. 2012-12-16 |
[60] |
Bandas C D, Rooney R T, Kirbs A, Jager C, Schmidt R, Gewirth A A. Interfacial leveler-accelerator interactions in Cu electrodeposition[J]. J. Electrochem. Soc., 2021, 168(4): 042501.
doi: 10.1149/1945-7111/abee5d |
[61] | Wang Z Y, Jin L, Yang J Q, Li W Q, Zhan D P, Yang F Z, Sun S G. Studies and progresses on hole metallization in high-density interconnected printed circuit boards[J]. J. Electrochem., 2021, (03): 316-331. |
[62] |
Lv J G, Zhao X H, Jie X, Li J, Wei X C, Chen B, Hong G, Wu W J, Wang L M. Fatty acid quaternary ammonium surfactants based on renewable resources as a leveler for copper electroplating[J]. ChemElectroChem, 2019, 6(13): 3254-3263.
doi: 10.1002/celc.v6.13 URL |
[63] |
Lei Z W, Chen L, Wang W L, Wang Z L, Zhao C. Tetrazole derived levelers for filling electroplated Cu microvias: Electrochemical behaviors and quantum calculations[J]. Electrochim. Acta, 2015, 178: 546-554.
doi: 10.1016/j.electacta.2015.08.037 URL |
[64] |
Chang C, Lu X B, Lei Z W, Wang Z L, Zhao C. 2-Mercaptopyridine as a new leveler for bottom-up filling of micro-vias in copper electroplating[J]. Electrochim. Acta, 2016, 208: 33-38.
doi: 10.1016/j.electacta.2016.04.177 URL |
[65] |
Wang X, Zhang S T, Chen S J, Tan B C, Guo H L, Wang Y, Qiang Y J, Fu S L, Wen Y N. Effects of 2,2-dithiodipyridine as a leveler for through-holes filling by copper electroplating[J]. J. Electrochem. Soc., 2019, 166(13): D660-D668.
doi: 10.1149/2.0461913jes |
[66] |
Lv J G, Xu J, Zhao X H, Han J W, Chen B, Wang X M, He Y L, Li J, Wang L M. Interface adhesion enhancement by condensed aromatic ring expansion of naphthalene imide derivatives for microvia metallization by copper electroplating[J]. Thin Solid Films, 2021, 727: 138671.
doi: 10.1016/j.tsf.2021.138671 URL |
[67] |
Ren S J, Lei Z W, Wang Z L. Investigation of nitrogen heterocyclic compounds as levelers for electroplating Cu filling by electrochemical method and quantum chemical calculation[J]. J. Electrochem. Soc., 2015, 162(10): D509-D514.
doi: 10.1149/2.0281510jes URL |
[68] |
Bozzini B, Mele C, D'Urzo L, Romanello V. An Electrochemical and in situ sers study of cu electrodeposition from acidic sulphate solutions in the presence of 3-diethylamino-7-(4-dimethylaminophenylazo)-5-phenylphenazinium chloride (Janus Green B)[J]. J. Appl. Electrochem., 2006, 36(9): 973-981.
doi: 10.1007/s10800-006-9124-0 URL |
[69] | He N, Sun H C, Dong X M, Xu H X. Design synthesis and polymerization kinetics of multi-armed star-shaped polyethyleneimine[J]. Polym. Mater. Sci. Eng., 2014, 30(7): 35-39. |
[70] | Zhang W X, Liu W X, Huang A P, Gao L, Li Z, Duan C L, Zhu B C. Applications, preparation methods and production status of polyethyleneimine[J]. Contemp. Chem. Ind., 2018, 47(02): 392-395. |
[71] | Paul A R, Louis R, Pierre C M. Synthesis of linear polyethyleneimine by living anionic polymerization: American, US10011683[P]. 2018-7-3. |
[72] | Guo K, Wang H X, Li Z J, Luo Z K, Liu Y Y, Wang X, Liu B, Zhou F Y. A method for synthesis of linear polyethyleneimine block copolymer: China, CN 108586738B[P]. 2020-10-27. |
[73] | Yu W F, Wang X, Li B G. A preparation method and application of polyquaternium salts: China: CN 102453257B[P]. 2014-3-26. |
[74] |
Chen B A, Wang A Y, Wu S Y, Wang L M. Polyquaternium-2: A new levelling agent for copper electroplating from acidic sulphate bath[J]. Electrochemistry, 2016, 84(6): 414-419.
doi: 10.5796/electrochemistry.84.414 URL |
[75] |
Hatch J J, Willey M J, Gewirth A A. Influence of aromatic functionality on quaternary ammonium levelers for Cu plating[J]. J. Electrochem. Soc., 2011, 158(6): D323-D329.
doi: 10.1149/1.3575636 URL |
[76] | Wang Y, Sun L, Wang P, et al. Synthesis and characterized of new quaternary ammonium polymers and its function test[J]. Contemp. Chem. Ind., 2008, (2): 149-152. |
[77] |
Hai N T M, Kraemer K W, Fluegel A, Arnold M, Mayer D, Broekmann P. Beyond interfacial anion/cation pairing: The role of Cu(I) coordination chemistry in additive-controlled copper plating[J]. Electrochim. Acta, 2012, 83: 367-375.
doi: 10.1016/j.electacta.2012.07.036 URL |
[78] |
Hai N T M, Furrer J, Barletta E, Luedi N, Broekmann P. Copolymers of imidazole and 1,4-butandiol diglycidyl ether as an efficient suppressor additive for copper electroplating[J]. J. Electrochem. Soc., 2014, 161(9): D381-D387.
doi: 10.1149/2.0111409jes URL |
[79] |
Li J, Zhou G Y, Hong Y, Wang C, He W, Wang S X, Chen Y M, Wen Z S, Wang Q Y. Copolymer of pyrrole and 1,4-butanediol diglycidyl as an efficient additive leveler for through-hole copper electroplating[J]. ACS Omega, 2020, 5(10): 4868-4874.
doi: 10.1021/acsomega.9b03691 pmid: 32201772 |
[1] | 沈钰, 李冰冰, 马艺, 王增林. 化学镀钴和超级化学镀填充的研究进展[J]. 电化学(中英文), 2022, 28(7): 2213002-. |
[2] | 谭柏照, 梁剑伦, 赖子亮, 罗继业. 高均匀性的铜柱凸块电镀[J]. 电化学(中英文), 2022, 28(7): 2213004-. |
[3] | 邹浩斌, 谭超力, 熊伟, 席道林, 刘彬云. 酸性镀铜添加剂开发及应用技术[J]. 电化学(中英文), 2022, 28(6): 2104531-. |
[4] | 马晓川, 李亚强, 杨培霞, 张锦秋, 安茂忠. 孔雀石绿对金属钴超填充和成核过程的影响[J]. 电化学(中英文), 2022, 28(6): 2104521-. |
[5] | 屈乙行, 崔敏, 张聪, 李冲, 李鹏, 任聚杰. 利用离子膜电解法改进过硫酸铵生产研究[J]. 电化学(中英文), 2021, 27(5): 586-592. |
[6] | 金磊, 杨家强, 杨防祖, 詹东平, 田中群, 周绍民. 芯片铜互连研究及进展[J]. 电化学(中英文), 2020, 26(4): 521-530. |
[7] | 王增林;刘志鹃;姜洪艳;王秀文;新宫原 正三;. 化学镀技术在超大规模集成电路互连线制造过程的应用[J]. 电化学(中英文), 2006, 12(2): 125-133. |
[8] | 郑剑;李宁;黎德育;崔国锋;. 在线原位观察电镀镍磷合金镀液光亮剂的作用[J]. 电化学(中英文), 2006, 12(1): 98-103. |
[9] | 胡进,吴慧敏,冯祥明,李卫东,左正忠,周运鸿. 光亮剂对银电沉积行为的影响[J]. 电化学(中英文), 2002, 8(1): 78-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||