[1] |
Li W, Dahn J R, Wainwright D S. Rechargeable lithium batteries with aqueous electrolytes[J]. Science, 1994, 264(5162): 1115-1118.
pmid: 17744893
|
[2] |
Ma J Z, Liu M M, He Y L, Zhang J T. Iodine redox chemistry in rechargeable batteries[J]. Angew. Chem. Int. Edit., 2021, 60(23): 12636-12647.
doi: 10.1002/anie.v60.23
URL
|
[3] |
Zeng X M, Meng X J, Jiang W, Liu J, Ling M, Yan L J, Liang C D. Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc-iodine batteries[J]. ACS Sustain. Chem. Eng., 2020, 8(38): 14280-14285.
doi: 10.1021/acssuschemeng.0c05283
URL
|
[4] |
Sun H C, Han Y N, Bo S, Cai F S. Preparation and electrochemical performance of I2/carbon cloth for cathode material[J]. Chinese J. Power Sources, 2018, 42(11): 1649-1650+1716.
|
[5] |
Zhang G M, Wang H F, Zhang S, Deng C. Using core-shell interlinked polymer@C-iodine hollow spheres to synergistically depress polyiodide shuttle and boost kinetics for iodine-based batteries[J]. J. Phys. Chem. A, 2018, 6(19): 9019-9031.
|
[6] |
Wang F X, Liu Z C, Yang C Q, Zhong H X, Nam G, Zhang P P, Dong R H, Wu Y P, Cho J, Zhang J, Feng X L. Fully conjugated phthalocyanine copper metal-organic frameworks for sodium-iodine batteries with long-time-cycling durability[J]. Adv. Mater., 2020, 32(4): 1905361.
doi: 10.1002/adma.v32.4
URL
|
[7] |
Hong J J, Zhu L D, Chen C C, Tang L T, Jiang H, Jin B, Gallagher T C, Guo Q B, Fang C, Ji X L. A dual plating battery with the iodine/[ZnIx(OH2)4-x]2-x cathode[J]. Angew. Chem. Int. Edit., 2019, 58(44): 15910-15915.
doi: 10.1002/anie.v58.44
URL
|
[8] |
Lan D Y, Qu X F, Tang Y T, Liu L Y, Liu J, Shi Z C. Acetate solutions with 3.9 V electrochemical stability window as an electrolyte for low-cost and high-performance aqueous sodium-ion batteries[J]. J. Electrochem., 2021, 28(1): 58-67.
|
[9] |
Pavelec J, DiGuiseppi D, Zavlavsky B Y, Uversky V N, Schweitzer-Stenner R. Perturbation of water structure by water-polymer interactions probed by FTIR and polarized Raman spectroscopy[J]. J. Mol. Liq., 2019, 275: 463-473.
doi: 10.1016/j.molliq.2018.11.023
URL
|
[10] |
Calabrese V T, Khan A. Polyiodine and polyiodide species in an aqueous solution of iodine plus KI: Theoretical and experimental studies[J]. J. Phys. Chem. A, 2000, 104(6): 1287-1292.
doi: 10.1021/jp992847r
URL
|
[11] |
Otsuka M, Mori H, Kikuchi H, Takano K. Density functional theory calculations of iodine cluster anions: Structures, chemical bonding nature, and vibrational spectra[J]. Comput. Theor. Chem., 2011, 973(1-3): 69-75.
doi: 10.1016/j.comptc.2011.07.002
URL
|
[12] |
Svensson P H, Kloo L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems[J]. Chem. Rev., 2003, 103(5): 1649-1684.
pmid: 12744691
|
[13] |
Xu P Q, Liu C Q. Determination of polyethylene glycol by iodine precipitation method[J]. Technol. of Water Treat., 1989, 5(15): 54-56.
|
[14] |
Wei Y J, Liu C G, Mo L P. Ultraviolet absorption spectra of iodine, iodide ion and triiodide ion[J]. Spectrosc. Spectral Anal., 2005, 25 (1): 86-88.
|
[15] |
McDaniel J G, Yethiraj A. Grotthuss Transport of iodide in EMIM/I3- ionic crystal[J]. J. Phys. Chem. B, 2018, 122(1): 250-257.
doi: 10.1021/acs.jpcb.7b09292
URL
|
[16] |
Wang Y, Chen K H. Low-cost, lightweight electrodes based on carbon fibers as current collectors for aluminum-ion batteries[J]. J. Electroanal. Chem., 2019, 849: 113374.
doi: 10.1016/j.jelechem.2019.113374
URL
|
[17] |
Janesko B G. Topological analysis of the electron delocalization range[J]. J. Comput. Chem., 2016, 37(21): 1993-2005.
doi: 10.1002/jcc.24421
pmid: 27296767
|
[18] |
Mehmood A, Janesko B G. The electron delocalization range in stretched bonds[J]. Int. J. Quantum Chem., 2016, 116(23): 1783-1795.
doi: 10.1002/qua.v116.23
URL
|
[19] |
Reuter L, Lüchow A. Real space electron delocalization, resonance, and aromaticity in chemistry[J]. Nat. Commun., 2021, 12(1): 4820.
doi: 10.1038/s41467-021-25091-8
pmid: 34376667
|
[20] |
Wu W L, Li C C, Wang Z Q, Shi H Y, Song Y, Liu X X, Sun X Q. Electrode and electrolyte regulation to promote coulombic efficiency and cycling stability of aqueous zinc-iodine batteries[J]. Chem. Eng. J., 2022, 428: 131283.
doi: 10.1016/j.cej.2021.131283
URL
|
[21] |
Pan H L, Li B, Mei D H, Nie Z M, Shao Y Y, Li G S, Li X H S, Han K S, Mueller K T, Sprenkle V, Liu J. Controlling solid-liquid conversion reactions for a highly reversible aqueous zinc-iodine battery[J]. ACS Energy Lett., 2017, 2(12): 2674-2680.
doi: 10.1021/acsenergylett.7b00851
URL
|
[22] |
Bai C, Cai F S, Wang L C, Guo S Q, Liu X Z, Yuan Z H. A sustainable aqueous Zn-I2 battery[J]. Nano Res., 2018, 11(7): 3548-3554.
doi: 10.1007/s12274-017-1920-9
|
[23] |
Deng C, Wang Z W, Wang S P, Yu J X, Martin D J, Nanjundan A K, Yamauchi Y. Double-layered modified separators as shuttle suppressing interlayers for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(1): 541-549.
doi: 10.1021/acsami.8b14196
URL
|
[24] |
Huang X S. Development and characterization of a bilayer separator for lithium ion batteries[J]. J. Power Sources, 2011, 196(19): 8125-8128.
doi: 10.1016/j.jpowsour.2011.05.054
URL
|