欢迎访问《电化学(中英文)》期刊官方网站,今天是
高级检索
|
图表检索
Toggle navigation
首页
期刊信息
期刊介绍
编委会
数据库收录
作者中心
征稿简则
论文范例
作者指南
在线投稿
出版伦理
读者中心
最新录用
当期目录
过刊浏览
全年目录
阅读排行
下载排行
引用排行
审稿中心
专家审稿
主编审稿
编委审稿
编辑登录
编辑政策
期刊订阅
联系我们
English
图/表 说明
高级检索
期刊
DOI
请选择
电化学(中英文)
起始年
结束年
请选择
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
请选择
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
卷
期
作者
作者单位
期刊
出版年
Table 2. Correct excess-heat calculations, assuming no recombination
Table 1. Reproduction of Photograph of table presented by N. Lewis on May 1, 1989
Fig. 6.
(a) Rietveld refinement results of LiFePO
4
electrodes with Li
2
Ni
0.7
Cu
0.3
O
2
after 1000 cycles. (b) Phase proportion of fully-charged baseline LiFePO
4
electrode and Li
2
Ni
0.7
Cu
0.3
O
2
-added electrodes after 1000 cycles. (c) Photograph and (d, e) SEM images of disassembled graphite electrodes from the fully-charged cells using LiFePO
4
as cathode without and with Li
2
Ni
0.7
Cu
0.3
O
2
. (f) C 1s and (g) F 1s XPS spectra of graphite anode retrieved from the cell without and with Li
2
Ni
0.7
Cu
0.3
O
2
after 1000 cycles at delithiated state.
Fig. 5.
(a) Average delithiation voltage and (b) average lithiation voltage of Li
2
Ni
1-x
Cu
x
O
2
materials. Density of states (DOS) of (c) Li
2
NiO
2
and (d) Li
2
Ni
0.7
Cu
0.3
O
2
.
Fig. 4.
(a) Schematic illustration of a graphite‖LiFePO
4
pouch cell with a nominal capacity of 3000 mAh assembled by the prototype line of Xiamen Hithium Energy Storage Technology Co., Ltd. LiFePO
4
pouch cell. (b) Cycling performance curves of pouch cell with Li
2
NiO
2
and Li
2
Ni
0.7
Cu
0.3
O
2
prelithiation additives. (c) The 60
th
and (d) 1000
th
charge/discharge curves.
Fig. 3.
(a) Galvanostatic charge/discharge voltage profiles of Li
2
Ni
1-x
Cu
x
O
2
(x = 0, 0.2, 0.3, 0.5) materials at 0.1 C (1 C = 450 mA·g
-1
). Galvanostatic charge/discharge voltage profiles of Li
2
NiO
2
and Li
2
Ni
0.7
Cu
0.3
O
2
at (b) 0.5 C and (c) 1 C. (d) Capacities of Li
2
NiO
2
and Li
2
Ni
0.7
Cu
0.3
O
2
at different current densities.
Fig. 2.
SEM images of (a, b) Li
2
NiO
2
, (e) Li
2
Ni
0.7
Cu
0.3
O
2
. TEM and energy dispersive spectroscopic (EDS) mapping imagess of (c, d) Li
2
NiO
2
and (f-h) Li
2
Ni
0.7
Cu
0.3
O
2
.
Fig. 1.
XRD patterns of Li
2
Ni
1-x
Cu
x
O
2
(x = 0, 0.2, 0.3, 0.5, 0.7) at (a) a full range and (b) an enlarged scale. Rietveld refinements of (c) Li
2
NiO
2
and (d) Li
2
Ni
0.7
Cu
0.3
O
2
(the inset is crystal structure illustration of Li
2
Ni
0.7
Cu
0.3
O
2
).
Table 1. Different metal nitrides employed in cathodes of lithium-sulfur batteries
Fig. 7.
(a) SEM image of WN, (b) TEM images and SAED patterns of WN, (c) Powder XRD pattern of WN. Reprinted with permission of Ref. [
77
], copyright 2017 Elsevier.
Fig. 6.
Schematic synthesis procedure of MoN and MoN-S. Reprinted with permission of Ref. [
72
], copyright 2020 Elsevier.
Fig. 5.
SEM images of (a) NCNs, (b) AlN@NCNs, and (c) AlN@NCNs/S. TEM images of (d) NCNs, (e) AlN@NCNs, and (f) AlN@NCNs/S. Reprinted with permission of Ref. [
68
], copyright 2023 Elsevier.
Fig. 4.
(a) Schematic illustration of Co
4
N sphere and its interaction with LiPSs during discharge/charge process of the lithium-sulfur battery. (b) Rate capability of Co
4
N/S at different current rates. (c) The charge and discharge capacity versus cycle number at current densities of 2 C and 5 C [
64
].
Fig. 3.
Schematic illustration for synthesizing the self-standing CC/VN/Co@NCNTs/S cathode electrode. Reprinted with permission of Ref. [
57
], copyright 2022 Elsevier.
Fig. 2
SEM images of TiO
2
tubes (a) and (b), and hollow TiN mesoporous tubes (c) and (d) [
54
].
Fig. 1.
a) Schematic representation of lithium-ion batteries based on the intercalation reactions (left) and lithium-sulfur batterie based on the conversion reaction (right), b) an ideal charge-discharge curve with different sulfur-containing species at different stages, the inset presents the polysulfide shuttling mechanism. Reprinted with permission of Ref. [
9
], copyright 2017 Wiley-VCH.
Table 4. RTE at constant current density variation for single and three catalyst layers electrode of URFC.
Figure 9.
RTE of URFC with MEA containing single and three catalyst layers under different current densities.
Figure 8.
MEA polarization curves of electrodes with (a) single catalyst layer and (b) three catalyst layers
Figure 7.
The hydrogen production rate at different current densities.
跳至
页
第1页
共167页
共3324条记录
首页
上一页
下一页
尾页