[1] |
Ai X P, Yang H X. Electric vehicles and power batteries[J]. J. Electrochem., 2011, 17(2): 123-133.
|
[2] |
Li H, Yu S J, Chen Z K, Liang G C. Failure reaction mechanism of internal short-circuit for lithium-ion batteries[J]. J. Electrochem., 2010, 16(2): 185-191.
|
[3] |
Feng X N, Ren D S, He X M, Ouyang M G. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
doi: 10.1016/j.joule.2020.02.010
URL
|
[4] |
Hu G X, Xie J Y. Some consideration for lithium-ion cell’s safety[J]. J. Electrochem., 2002, (3): 245-251.
|
[5] |
Ai X P, Cao Y L, Yang H X. Self-activating safety mechanisms for Li-ion batteries[J]. J. Electrochem., 2010, 16(1): 6-10.
|
[6] |
Chen Y H, Tang Z Y, He Y B, Liu Q. Research of explosion mechanism of lithium-ion battery[J]. J. Electrochem., 2006, (03): 266-270.
|
[7] |
Zeng L X, Liu R P, Han L, Luo F Q, Chen X, Wang J B, Qian Q R, Chen Q H, Wei M D. Preparation of a Si/SiO2-ordered-mesoporous-carbon nanocomposite as an anode for high-performance lithium-ion and sodium-ion batteries[J]. Chem. Eur. J., 2018, 24(19): 4841-4848.
doi: 10.1002/chem.v24.19
URL
|
[8] |
Xiao T T, Zhang W F, Xu T, Wu J X, Wei M D. Hollow SiO2 microspheres coated with nitrogen doped carbon layer as an anode for high performance lithium-ion batteries[J]. Electrochim. Acta, 2019, 306: 106-112.
doi: 10.1016/j.electacta.2019.03.109
URL
|
[9] |
Wang Y, Ren D S, Feng X N, Wang L, Ouyang M G. Thermal runaway modeling of large format high-nickel/silicon-graphite lithium-ion batteries based on reaction sequence and kinetics[J]. Appl. Energy, 2022, 306: 117943.
doi: 10.1016/j.apenergy.2021.117943
URL
|
[10] |
Shi Y, Noelle D J, Wang M, Le A V, Yoon H, Zhang M H, Meng Y S, Qiao Y. Exothermic behaviors of mechanically abused lithium-ion batteries with dibenzylamine[J]. J. Power Sources, 2016, 326: 514-521.
doi: 10.1016/j.jpowsour.2016.07.034
URL
|
[11] |
Shi Y, Noelle D J, Wang M, Le A V, Yoon H, Zhang M H, Meng Y S, Qiao Y. Roles of amines in thermal-runaway-mitigating lithium-ion battery[J]. ACS Appl. Mater. Interfaces, 2016, 8(45): 30956-30963.
doi: 10.1021/acsami.6b10501
URL
|
[12] |
Wang L, Feng X N, Xue G, Li M G, Hu J Y, Tian G Y, He X M. ARC experimental and data analysis for safety evaluation of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1261-1270.
|
[13] |
Feng X N, Fang M, He X M, Ouyang M G, Lu L G, Wang H, Zhang M X. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. J. Power Sources, 2014, 255: 294-301.
doi: 10.1016/j.jpowsour.2014.01.005
URL
|
[14] |
Xu C S, Feng X N, Huang W S, Duan Y K, Chen T Y, Gao S, Lu L G, Jiang F C, Ouyang M G. Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry[J]. J. Energy Storage, 2020, 31: 101670.
doi: 10.1016/j.est.2020.101670
URL
|
[15] |
Chou L Y, Ye Y S, Lee H K, Huang W X, Xu R, Gao X, Chen R J, Wu F, Tsung C K, Cui Y. Electrolyte-resistant dual materials for the synergistic safety enhancement of lithium-ion batteries[J]. Nano Lett., 2021, 21(5): 2074-2080.
doi: 10.1021/acs.nanolett.0c04568
URL
|