[1] |
Zhan C, Chen X J, Yi J, Li J F, Wu D Y, Tian Z Q. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions[J]. Nat. Rev. Chem., 2018, 2(9): 216-230.
doi: 10.1038/s41570-018-0031-9
|
[2] |
Zhang Y C, He S, Guo W X, Hu Y, Huang J W, Mulcahy J R, Wei W D. Surface-plasmon-driven hot electron photochemistry[J]. Chem. Rev., 2018, 118(6): 2927-2954.
doi: 10.1021/acs.chemrev.7b00430
pmid: 29190069
|
[3] |
Gelle A, Jin T, de la Garza L, Price G D, Besteiro L V, Moores A. Applications of plasmon-enhanced nanocatalysis to organic transformations[J]. Chem. Rev., 2020, 120(2): 986-1041.
doi: 10.1021/acs.chemrev.9b00187
pmid: 31725267
|
[4] |
Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nat. Nanotechnol., 2015, 10(1): 25-34.
doi: 10.1038/nnano.2014.311
pmid: 25559968
|
[5] |
Moon C W, Choi M J, Hyun J K, Jang H W. Enhancing photoelectrochemical water splitting with plasmonic Au nanoparticles[J]. Nanoscale Adv., 2021, 3(21): 5981-6006.
doi: 10.1039/d1na00500f
pmid: 36133946
|
[6] |
Ingram D B, Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface[J]. J. Am. Chem. Soc., 2011, 133(14): 5202-5205.
doi: 10.1021/ja200086g
pmid: 21425795
|
[7] |
Wang S J, Zhang X Y, Su D, Yan X, Zhou H L, Xue X M, Wang Y F, Zhang T. Enhanced photocatalytic reactions via plasmonic metal-semiconductor heterostructures combing with solid-liquid-gas interfaces[J]. Appl. Catal. B-Environ., 2022, 306: 121102.
doi: 10.1016/j.apcatb.2022.121102
URL
|
[8] |
Kim Y, Creel E B, Corson E R, McCloskey B D, Urban J J, Kostecki R. Surface-plasmon-assisted photoelectrochemical reduction of CO2 and NO3- on nanostructured silver electrodes[J]. Adv. Energy Mater., 2018, 8(22): 1800363
|
[9] |
Huang H N, Shi R, Li Z H, Zhao J Q, Su C L, Zhang T R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angew. Chem. Int. Ed., 2022, 61(17): e202200802.
|
[10] |
Saravanan R, Manoj D, Qin J Q, Naushad M, Gracia F, Lee A F, Khan M M, Gracia-Pinilla M A. Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production[J]. Process Saf. Enivron. Protect., 2018, 120: 339-347.
|
[11] |
Christopher P, Ingram D B, Linic S. Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: Photochemistry mediated by Ag surface plasmons[J]. J. Phys. Chem. C, 2010, 114(19): 9173-9177.
doi: 10.1021/jp101633u
URL
|
[12] |
Furube A, Du L, Hara K, Katoh R, Tachiya M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles[J]. J. Am. Chem. Soc., 2007, 129(48): 14852-14853.
doi: 10.1021/ja076134v
URL
|
[13] |
Zhang Y C, Guo W X, Zhang Y L, Wei W D. Plasmonic photoelectrochemistry: In view of hot carriers[J]. Adv. Mater., 2021, 33(46): 2006654.
|
[14] |
Ichinose H, Terasaki M, Katsuki H. Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium hydrate[J]. J. Sol-Gel Sci. Technol., 2001, 22(1-2): 33-40.
doi: 10.1023/A:1011256118320
URL
|
[15] |
Damato T C, de Oliveira C C S, Ando R A, Camargo P H C. A facile approach to TiO2 colloidal spheres decorated with Au nanoparticles displaying well-defined sizes and uniform dispersion[J]. Langmuir, 2013, 29(5): 1642-1649.
doi: 10.1021/la3045219
URL
|
[16] |
Yang L B, Jiang X, Ruan W D, Yang J X, Zhao B, Xu W Q, Lombardi J R. Charge-transfer-induced surface-enhanced raman scattering on Ag-TiO2 nanocomposites[J]. J. Phys. Chem. C, 2009, 113(36): 16226-16231.
doi: 10.1021/jp903600r
URL
|
[17] |
Zhang Y, Chen J R, Tang H, Xiao Y G, Qiu S F, Li S J, Cao S S. Hierarchically-structured SiO2-Ag@TiO2 hollow spheres with excellent photocatalytic activity and recyclability[J]. J. Hazard. Mater., 2018, 354: 17-26.
doi: S0304-3894(18)30297-8
pmid: 29723759
|
[18] |
Hong D C, Lyu L M, Koga K, Shimoyama Y, Kon Y. Plasmonic Ag@TiO2 core-shell nanoparticles for enhanced CO2 photoconversion to CH4[J]. ACS Sustain. Chem. Eng., 2019, 7(23): 18955-18964.
doi: 10.1021/acssuschemeng.9b04345
URL
|
[19] |
Kohtani S, Kawashima A, Miyabe H. Reactivity of trapped and accumulated electrons in titanium dioxide photocatalysis[J]. Catalysts, 2017, 7(10): 303
doi: 10.3390/catal7100303
URL
|
[20] |
Zhang L W, Mohamed H H, Dillert R, Bahnemann D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review[J]. J. Photochem. Photobiol. C-Photochem. Rev., 2012, 13(4): 263-276.
doi: 10.1016/j.jphotochemrev.2012.07.002
URL
|
[21] |
Mercado C, Seeley Z, Bandyopadhyay A, Bose S, McHale J L. Photoluminescence of dense nanocrystalline titanium dioxide thin films: Effect of doping and thickness and relation to gas sensing[J]. ACS Appl. Mater. Interfaces, 2011, 3(7): 2281-2288.
doi: 10.1021/am2006433
URL
|
[22] |
Wang H L, He J J, Boschloo G, Lindström H, Hagfeldt A, Lindquist S E. Electrochemical investigation of traps in a nanostructured TiO2 film[J]. J. Phys. Chem. B, 2001, 105(13): 2529-2533.
doi: 10.1021/jp0036083
URL
|
[23] |
Naseri N, Kim H, Choi W, Moshfegh A Z. Optimal Ag concentration for H2 production via Ag: TiO2 nanocomposite thin film photoanode[J]. Int. J. Hydrog. Energy, 2012, 37(4): 3056-3065.
doi: 10.1016/j.ijhydene.2011.11.041
URL
|
[24] |
Hernández S, Gerardi G, Bejtka K, Fina A, Russo N. Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis[J]. Appl. Catal. B, 2016, 190: 66-74.
doi: 10.1016/j.apcatb.2016.02.059
URL
|
[25] |
DuChene J S, Sweeny B C, Johnston-Peck A C, Su D, Stach E A, Wei W D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis[J]. Angew. Chem. Int. Ed., 2014, 53(30): 7887-7891.
doi: 10.1002/anie.201404259
pmid: 24920227
|
[26] |
Moon S Y, Song H C, Gwag E H, Nedrygailov I I, Lee C, Kim J J, Doh W H, Park J Y. Plasmonic hot carrier-driven oxygen evolution reaction on Au nanoparticles/TiO2 nanotube arrays[J]. Nanoscale, 2018, 10(47): 22180-22188.
doi: 10.1039/c8nr05144e
pmid: 30484456
|
[27] |
Moser J E. Perovskite photovoltaics: Slow recombination unveiled[J]. Nat. Mater, 2017, 16(1): 4-6.
doi: 10.1038/nmat4796
|