《下一代二次电池》专辑序言 随着人类社会的迅速发展,能源和环境问题逐渐成为人们关注的焦点. 化石燃料的过度依赖和使用所导致的全球变暖和环境污染日趋严重,国内大范围高频率的雾霾天气引起了民众的广泛担心,迫切要求加快能源技术创新,建设清洁低碳、安全高效的新能源体系. 风能、太阳能和潮汐能等清洁可再生能源在空间和时间上分布不均,电化学储能是实现其广泛应用的关键环节. 以锂离子电池为代表的二次电池技术一经出现就在数码产品等移动电源市场占据了主导地位,然而长距离续航里程的电动汽车和发展新能源需要的智能电网等对储能技术提出了更高的要求. 因此,下一代二次电池储能体系的研究发展至关重要,对我国能源、交通、信息和国防等领域的高速发展和相关战略新兴产业的形成和壮大具有重要意义. 传统的锂离子电池被形象地称为“摇椅式电池”,摇椅的两端为电池的正负极,锂离子像运动员一样在摇椅的两端来回奔跑完成电池的充放电过程,但正负极活性材料有限的理论比容量限制了体系能量密度的进一步提升. 使用金属锂负极是下一代二次电池储能技术发展的重要方向,在其基础上发展了全固态锂电池、锂硫电池和锂空气电池等. 全固态锂电池的电解质固态化,有助于克服锂枝晶的生长和避免锂枝晶穿透隔膜引发电池短路,使其具有能量密度高、安全性能好等优势. 为了匹配锂金属超高的理论能量密度,陆续发展了以硫作为正极活性材料的锂硫电池和以氧气为活性材料的锂空气电池. 与传统锂离子电池的离子脱嵌机理完全不同,锂硫电池和锂空气电池的正极不仅物质结构与性质发生较大变化,而且还存在大幅变化的固固、固液、固气、气液等多相反应界面. 此外,由于全球锂资源的匮乏和分布不均衡,开发一种替代电池成为各国科学家努力的重要方向. 钠离子电池因其电化学储能机理与锂离子电池类似,并且地球上钠资源十分丰富,开采费用仅为锂的百分之一,相关研究发展受到了广泛关注. 上述二次电池储能体系无疑具有广阔的应用前景,在研发上已经取得一系列令人瞩目的进展,但各项技术均处在早期研发阶段,仍需进行大量深入的研究工作. 本专辑围绕下一代二次电池专题,收录了在相关研究领域具有丰富经验积累和影响力的团队所撰写的9篇相关研究进展的综述文章和研究论文. 希望借助此专辑的出版,能使广大读者更好地了解当前新型储能体系研究领域的研究现状、研究趋势和存在的问题及挑战,以推动我国下一代二次电池研究的进一步发展. 最后,对本专辑的所有作者、审稿人及编辑部工作人员的辛勤工作和付出表示由衷的感谢!
《电化学分析传感》专辑序言 电化学分析传感是一种基于界面电荷相互作用的测量方法,具有高灵敏、响应快、无标记等本征优势. 该方法的核心思路是将待测对象构建成为化学电池的某一部分,通过测量界面电子转移或电荷重排过程中产生的电信号响应,如电池电位、电流、电导、电量变化,对待测目标进行定性定量动态地检测、监测或表征. 近年来,伴随着测量仪器性能和数据处理方法的持续提高与优化,电化学分析传感研究前沿热点越来越多地关注到纳米尺度界面上的瞬态电荷相互作用、动态电荷传输机制,特别是发展限域空间内的单体纳米电化学信号放大、传输、记录、解析新模式和新策略. 其中,单体电化学分析,如单颗粒碰撞法等,不仅可以得到常规宏观测量的单一平均结果,同时还能描绘出所有不同颗粒结构与性能的完整分布,揭示少量但关键的电化学活性位点和反应机理;而纳米限域电化学分析,如纳米孔道协同测量等,则能通过限域效应有效延长亚稳态中间体的结构寿命,灵敏识别不同待测单体间的细微理化性质差异及其动态变化过程. 此外,电分析方法也更多地与谱学、成像等技术联用,对界面电化学过程进行原位、实时、在线表征,以期揭示纳米界面的电荷传递和能量转化的化学本质. 进而指导设计构建高灵敏电化学传感器,实现在疾病的早期检测、能源转换的高效率用、水体环境污染的有效治理等国家战略性产业中的广泛应用. 本专辑围绕电化学分析传感新方法与新技术,收录了在相关研究领域具有丰富经验积累和影响力的团队所撰写的21篇相关研究进展的综述文章和研究论文(分成两期出版,分别包含10篇和11篇). 希望借助此专辑的出版,能使广大读者更好地了解当前电化学测量领域的研究现状、研究趋势和存在的问题及挑战,推动我国下一代电化学精准分析技术和高效传感应用的进一步发展. 最后,对本专辑的所有作者、审稿人及编辑部工作人员的辛勤工作和付出表示由衷的感谢!
纳流控作为一个崭新的研究领域正受到越来越多的关注,并且已被成功应用到纳米尺度分离、生化传感、能量转化等诸多领域. 纳流控的发展与电化学紧密相连,一方面,电化学可以为纳米孔道中的物质传输特性的研究提供驱动力;另一方面,纳米孔道可以为限域电化学研究提供微环境. 纳流控和电化学技术相辅相成,催生了许多单分子、单粒子分析以及纳米流体操控的新理念与新技术. 本综述从纳米孔道与电极的结合方式出发,对纳流控-电化学相关研究进行了总结与展望.
研究酶的组装和催化反应不仅有利于探索生命活动的本质,同时对开发酶在工业合成、分析检测、疾病治疗等领域的实际应用价值具有重要的指导意义. 研究发现,酶的有效固定和有序组装是保持酶活性、酶促反应的稳定性和对酶催化过程进行控制的重要途径,而在纳米通道内进行单酶或多酶的有序组装,利用纳米通道的限域效应可有效保持酶的构型进而提高酶催化反应的选择性和催化效率,增强酶级联反应的动力学进程. 本文概述了近年来基于纳米通道的酶反应器在生物传感领域的研究进展,着重描述纳米通道限域空腔内酶的组装方法、酶催化反应及其动力学机制,并展望了基于纳米通道的酶反应器的应用前景.
相对湿度是许多领域的关键参数,环境湿度与人们的生活密切相关,因此对湿度进行测量和控制是各个领域中值得关注的问题之一. 在前期的研究中,作者制备了一种新型的超分子离子材料(SIM),它是由基于咪唑的双阳离子(如1,10-双(3-甲基咪唑-1-基)癸烷,C10(mim)2)和电活性二阴离子(如2,2'-连氮基-双(3-乙基苯并噻唑啉-6-磺酸),ABTS)组成的,发现其对湿度具有敏感且快速的响应. 在此基础上,本文制备了6种不同碳链(C4,C6,C8,C10,C12,C14)的咪唑基化合物,发现其中3种(C10,C12,C14)可与ABTS形成水稳定的SIM. 循环伏安法、计时电流法以及石英晶体微量天平表征了这些超分子离子材料的湿度传感性能,发现基于C12的SIM具有最佳的湿度传感性能. 同时,SEM结果显示随着碳链的增加,离子材料的厚度变薄并且形态变得不规则. 因此,作者认为疏水作用和材料比表面积均会影响湿度传感的灵敏度. 本研究为发展新的湿度响应的离子传感材料奠定了基础.
纳米材料由于独特的物理化学性质,在生物医学领域显示出许多潜在的应用前景,诸如医学成像、药物输运和生物传感等. 这篇综述总结了对过氧化氢和氧还原表现出好的电催化活性的一些纳米材料显示了辐射防护性能. 作者讨论了这些纳米材料的辐射防护性能来源于它们的类酶活性,因为它们的催化性质表现为和活性氧的快速反应,为清除体内的自由基提供了一条有效通道. 作者也提出了纳米材料的电催化活性和作为临床转化关键的辐射防护性能之间关系的见解. 最后,作者指出了这些纳米材料作为新的辐射防护剂用于辐射防护治疗辅助成份所面临的挑战和将来的研究方向.
电化学发光(ECL)因其独特的性能特点在生物分析等领域展现出广阔的应用前景,高效ECL试剂的开发则为性能优异的传感器件的发展和临床应用提供了重要工具. 开放骨架超四面体硫簇由于同时具有分子筛的多孔结构和半导体的优异光电性能,在ECL分析中受到了越来越多的关注. 超四面体硫簇的结构组成可以实现原子级别的精确调控,并且其本身还可以作为结构单元来构筑多孔结构半导体材料. 这些特点使通过原子级别的结构组成调节来调控超四面体硫簇的性能成为可能,为发展性能优异的电化学发光材料,拓展其在生化传感、免疫分析和生物成像等方面的应用提供有效工具. 本综述总结了超四面体硫簇的合成、缺陷掺杂、功能调控及ECL生化分析等方面的研究进展,为推进高效ECL新材料的发展和新应用的拓展提供了借鉴.
近年来,污水流行病学(wastewater-based epidemiology, WBE)已被证明是用来监测社区毒品滥用和公共健康的一种有效评估方法,该方法通过定量分析指定社区污水回收站中污水的药物残留或者代谢物来反推社区中人们对毒品的消耗量并结合指定社区的人口数量对其进行归一化处理. 电化学生物传感器具有响应时间快、成本低、分析样品需求量小、数据分辨率高以及能够现场快速测试等特点,已被广泛应用于疾病快速诊断、环境污染监测、食品安全以及毒品检测等领域. 液相色谱-质谱联用是分析污水中的毒品及其代谢物的主要方法,但随着传感技术尤其是电化学传感器近来的快速发展,也开始被用于研究污水传染病学并可实现现场快速测量. 本文综述了电化学生物传感器在污水中无机污染物(如重金属)、有机污染物(如农药、毒品)、生物分子(如 DNA)以及细菌等微生物分析中的最新进展,同时还论述了目前电化学传感器技术在污水流行病学领域的应用和未来所面临的主要挑战.
单颗粒碰撞电化学近年来已得到迅速发展并在纳米颗粒的性质分析及包括DNA、RNA、蛋白质、酶、细菌、病毒、囊泡类物质等生物体的检测上展示出广阔的前景. 在这篇综述中,作者总结了近年来单颗粒碰撞电化学在电化学分析中的进展,按分析检测的策略不同分为以下几个部分阐述:纳米粒子或标记纳米粒子的直接电解;包含氧化还原活性分子的软颗粒的直接电解;颗粒的间接电化学行为;区域扩散阻塞效应;电流强度及碰撞频率的改变.
近年来,单颗粒碰撞技术在纳米电化学领域受到广泛关注. 该技术通常控制超微电极处于某一电位,检测单个纳米颗粒随机碰撞到电极表面后产生的瞬时电流. 通过分析电流信号,可以研究单个纳米颗粒的性质. 尽管该技术可以检测单个纳米颗粒的电化学或电催化电流,但是传统的单颗粒碰撞技术缺乏空间分辨率,难以识别和表征特定的纳米颗粒. 因此,结合光学成像技术研究单颗粒碰撞电化学来补充电化学技术缺失的空间信息已成为一种趋势. 本文首先简要综述了单颗粒碰撞技术的三种检测原理,主要介绍了近年来单颗粒碰撞技术与荧光显微镜、表面等离激元共振显微镜、全息显微镜和电致化学发光相结合的研究进展,最后展望了单颗粒碰撞技术未来的发展趋势.