[1] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2015, 22(3): 587-603.
[2] Monroe C, Newman J. The impact of elasctic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of The Electrochemical Society, 2005, 152(2): A396-A404.
[3] Ren Y Y, Shen Y, Lin Y H, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochemistry Communications, 2015, 57: 27-30.
[4] Aboulaich A, Bouchet R, Delaizir G, et al. A new approach to develop safe all-inorganic monolithic Li-ion batteries[J]. Advanced Energy Materials, 2011, 1(2): 179-183.
[5] Ito Y, Yamakawa S, Hayashi A, et al. Effects of the microstructure of solid-electrolyte-coated LiCoO2 on its discharge properties in all-solid-state lithium batteries[J]. Journal of Materials Chemistry A,, 2017, 5(21): 10658-10668.
[6] Trevey J E, Stoldt C R, Lee S H. High power nanocomposite TiS2 cathodes for all-solid-state lithium batteries[J]. Journal of The Electrochemical Society, 2011, 158(12): A1282-A1289.
[7] Nam Y J, Oh D Y, Jung S H, et al. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes[J]. Journal of Power Sources, 2018, 375: 93-101.
[8] Bai P, Li J, Brushett F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy and Environmental Science, 2016, 9(10): 3221-3229.
[9] Zhang W Q, Nie J H, Li F, et al. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane[J]. Nano Energy, 2018, 45: 413-419.
[10] Cheng L, Chen W, Kunz M, et al. Effect of surface microstructure on electrochemical performance of garnet solid electrolyte[J]. ACS Applied Materials and Interfaces, 2015, 7(3): 2073-2081.
[11] Wang B, Bates J B, Hart F X, et al. Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes[J]. Cheminform, 1997, 28(6): 3203-3213.
[12] Hovington P, Lagace M, Guerfi A, et al. New lithium metal polymer solid state battery for an ultrahigh energy: nano C-LiFePO4 versus nano Li1.2V3O8[J]. Nano Letters, 2015, 15(4): 2671-2678.
[13] Li D Z, Ma Z G, Xu J, et al. High temperature property of all-solid-state thin film lithium battery using LiPON electrolyte[J]. Materials Letters, 2014, 134(7): 237-239.
[14] Iriyama Y, Yada C, Abe T, et al. A new kind of all-solid-state thin-film-type lithium-ion battery developed by applying a D.C. high voltage[J]. Electrochemistry Communications, 2016, 8(8): 1287-1291.
[15] Bate J B, Dudney N J, Neudecker B, et al. Thin-film lithium and lithium-ion batteries[J]. Solid State Ionics, 2000, 135: 33-45.
[16] Li Y T, Zhou W D, Chen X, et al. Mastering the interface for advanced all-solid-state lithium rechargeable batteries[J]. Proceedings of the National Academy of Science, 2016, 113(47): 13313-13317.
[17] Fu K K, Gong Y H, Liu B Y, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): e1601659.
[18] Brissot C, Rosso M, Chazalviel J N, et al. In situ study of dendritic growth in lithium PEO-salt lithium cells[J]. Electrochimica Acta, 1998, 43(10-11): 1569-1574.
[19] Duan H, Yin Y X, Shi Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140(1): 82-85.
[20] Wang C W, Gong Y H, Dai J Q, et al. In situ neutron depth profiling of lithium metal-garnet interfaces for solid state batteries[J]. Journal of the American Chemical Society, 2017, 139(40): 14257-14264.
[21] Eshetu G G, Judez X, Li C, et al. Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2017, 56(48): 15368-15372.
[22] Ren Y Y, Shen Y, Lin Y H, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochemistry Communications, 2015, 57: 27-30.
[23] Sagane F, Shimokawa R, Sano H, et al. In-situ scanning electron microscopy observation of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface[J]. Journal of Power Sources, 2013, 225: 245-250.
[24] Nagao M, Hayashi A, Tatsumisago M, et al. In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte[J]. Physical Chemistry Chemical Physics, 2013, 15(42): 18600-18606.
[25] Dolle M, Sannier L, Beaudoin B, Trentin M, et al. Live scanning electron microscope observation of dendritic growth in lithium/polymer cells[J]. Electrochemical and Solid-State Letters, 2002, 5(12): A286-A289.
[26] Li L, Basu S, Wang Y P, et al. Self-heating-induced healing of lithium dendrites[J]. Science, 2018, 359(6383): 1513-1516.
[27] Wang Z Y, Santhanagopalan D, Zhang W, et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries[J]. Nano Letters, 2016, 16(6): 3760-3767.
[28] Santhanagopalan D, Qian D, McGilvray T, et al. Interface limited lithium transport in solid-state batteries[J]. Journal of Physical Chemistry Letters, 2014, 5(2): 298-303.
[29] Brazier A, Dupont L, Dantras-Laffont L, et al. First crosssection observation of an all solid-state lithium-ion “nano battery” by transmission electron microscopy[J].Chemistry of Materials, 2008, 20(6): 2352-2359.
[30] Ihlefeld J F, Clem P G, Doyle B L, et al. Fast lithium-ion conducting thin-film electrolytes integrated directly on flexible substrates for high-power solid-state batteries[J]. Advanced Materials, 2011, 23(47): 5663-5667.
[31] Wang Z, Lee J Z, Xin H L, et al. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries[J]. Journal of Power Sources, 2016, 324: 342-348.
[32] Liu S Y, Xie J, Su Q M, et al. Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery[J]. Nano Energy, 2014, 8(6): 84-94.
[33] Zhang Y, Lai J Y, Gong Y D, et al. A safe high-performance all-solid-state lithium-vanadium battery with a freestanding V2O5 nanowire composite paper cathode[J]. Journal of American Chemistry Society: Applied Materials & Interfaces, 2016, 8(50): 34309-34316.
[34] Hayashi A, Nishio Y, Kitaura H, et al. Novel technique to form electrode-electrolyte nanointerface in all-solid-state rechargeable lithium batteries[J]. Electrochemistry Communications, 2008, 10(12): 1860-1863.
[35] Sun C W, Liu J, Gong Y D, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386.
[36] Kitaura H, Hayashi A, Ohtomo T, et al. Fabrication of electrode-electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes[J]. Journal of Materials Chemistry, 2011, 21(1): 118-124.
[37] Zhu J, Feng J K, Lu L, et al. In situ study of topography, phase and volume changes of titanium dioxide anode in all-solid-state thin film lithium-ion battery by biased scanning probe[J]. Journal of Power Sources, 2012, 197(1): 224-230.
[38] Masuda H, Ishida N, Ogata Y, et al. Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy[J]. Nanoscale, 2017, 9(2): 893-898.
[39] Harry K J, Hallinan D T, Parkinson D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1): 69-73.
[40] Chien P H, Feng X Y, Tang M X, et al. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI[J]. Journal of Physical Chemistry Letters, 2018, 9(8): 1990-1998.
[41] Romanenko K, Jin L Y, Howlett P, et al. In situ MRI of operating solid-state lithium metal cells based on ionic plastic crystal electrolytes[J]. Chemistry of Materials, 2016, 28(8): 2844-2851.
[42] Brissot C, Rosso M, Chazalviel J N, et al. Dendritic growth mechanisms in lithium polymer cells[J]. Journal of Power Sources, 1999, 81: 925-929.
[43] Porz L, Swamy T, Sheldon B W, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes[J]. Advanced Energy Materials, 2017, 7(20): 1701003.
[44] Zhang J X, Zhao N, Zhang M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447-454.
[45] Kim K H, Iriyama Y, Yamamoto K, et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery[J]. Journal of Power Sources, 2011, 196(2): 764-767.
[46] Hsieh A G, Bhadra S, Hertzberg B J, et al. Electrochemical-acoustic time of flight: In operando correlation of physical dynamics with battery charge and health[J]. Environment and Environmental Science, 2015, 8(5): 1569-1577.
[47] Bai P, Li J, Brushett F R, et al. Transition of lithium growth mechanisms in liquid electrolytes[J]. Energy and Environmental Science, 2016, 9(10): 3221-3229. |