[1] Liu X M, Xiao T F, Wu F, et al. Ultrathin cell-membrane-mimic phosphorylcholine polymer film coating enables large improvements for in vivo electrochemical detection[J]. Angewandte Chemie International Edition, 2017, 56(39): 11802-11806.
[2] Zhou D M(周道民), Greenber R. Electrochemistry in neural stimulation by biomedical implant[J]. Journal of Electrochemistry(电化学), 2011, 17(3): 249-262.
[3] Lin Y Q, Trouillon R, Svensson M I, et al. Carbon-ring microelectrode arrays for electrochemical imaging of single cell exocytosis: fabrication and characterization[J]. Analyti-
cal Chemistry, 2012, 84(6): 2949-2954.
[4] Lin C J(林昌健), Chen L J(陈丽江), Du R G(杜荣归), et al. Microelectrode studies on the pitting corrosion process of stainless steel[J]. Journal of Electrochemistry(电化学), 1998, 4(1): 12-17.
[5] Wei Y L(卫应亮), Shao C(邵晨), Feng H(冯辉). Study on the electrogeneration and properties of superoxide ion in aprotic media by using carbon nanotubes powder microelectrode[J]. Journal of Electrochemistry(电化学), 2007, 13(2): 207-211.
[6] Biran R, Martin D C, Tresco P A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays[J]. Experimental Neurology, 2005, 195(1): 115-126.
[7] He R Q, Tang H F, Jiang D C, et al. Electrochemical visualization of intracellular hydrogen peroxide at single cells[J]. Analytical Chemistry, 2016, 88(4): 2006-2009.
[8] Li X C, Majdi S, Dunevall J, et al. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes[J]. Angewandte Chemie International Edition, 2015, 54(41): 11978-11982.
[9] Li Y, Hu K K, Yu Y, et al. Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells[J]. Journal of the American Chemical Society, 2017, 139(37): 13055-13062.
[10] Zhang X W, Qiu Q F, Jiang H, et al. Real-time intracellular measurements of ROS and RNS in living cells with single core-shell nanowire electrodes[J]. Angewandte Chemie International Edition, 2017, 56(42): 12997-13000.
[11] Xiong L H(熊丽华), Shi C H(施财辉), Li X Q(李筱琴), et al. Gold electrodeposition on microelectrodes[J]. Journal of Electrochemistry(电化学), 1998, 4 (1): 25-29.
[12] Ding S S, Liu Y Z, Ma C R, et al. Development of glass-sealed gold nanoelectrodes for in vivo detection of dopamine in rat brain[J]. Electroanalysis, 2018, 30(6): 1041-1046.
[13] Ayata S, Ensinger W. Ion beam sputtering coating in combination with sol-gel dip coating of Al alloy tube inner walls for corrosion and biological protection[J]. Surface and Coatings Technology, 2018, 340: 121-125.
[14] Hasanzadeh M, Shadjou N, Guardia M D L. Current advancement in electrochemical analysis of neurotransmitters in biological fluids[J]. TrAC Trends in Analytical Chemistry, 2017, 86: 107-121.
[15] Wightman R M, May L J, Michael A C. Detection of dopamine dynamics in the brain[J]. Analytical Chemistry, 1988, 60(13): 769A-793A.
[16] Nestler E J. Hard target: Understanding dopaminergic neurotransmission[J]. Cell, 1994, 79(6): 923-926.
[17] Hyman S E, Malenka R C. Addiction and the brain: The neurobiology of compulsion and its persistence[J]. Nature Reviews Neuroscience, 2001, 2(10): 695-703.
[18] Wang K Q, Zhao X, Li B, et al. Ultrasonic-aided fabrication of nanostructured Au-ring microelectrodes for monitoring transmitters released from single cells[J]. Analytical Chemistry, 2017, 89(17): 8683-8688.
[19] Wang K, Xiao T F, Yue Q W, et al. Selective amperometric recording of endogenous ascorbate secretion from a single rat adrenal chromaffin cell with pretreated carbon fiber microelectrodes[J]. Analytical Chemistry, 2017, 89(17): 9502-9507.
[20] Xiao T F, Jiang Y N, Ji W L, et al. Controllable and reproducible sheath of carbon fibers with single-walled carbon nanotubes through electrophoretic deposition for in vivo electrochemical measurements[J]. Analytical Chemistry, 2018, 90(7): 4840-4846.
[21] Zhao X, Wang K Q, Li B, et al. Fabrication of a flexible and stretchable nanostructured gold electrode using a facile ultraviolet-irradiation approach for the detection of nitric oxide released from cells[J]. Analytical Chemistry, 2018, 90(12): 7158-7163.
[22] Lin Y Q, Wang K Q, Xu Y A, et al. Facile development of Au-ring microelectrode for in vivo analysis using non-toxic polydopamine as multifunctional material[J]. Biosensors and Bioelectronics, 2016, 78: 274-280.
[23] Keithley R B, Takmakov P, Bucher E S, et al. Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry[J]. Analytical Chemistry, 2011, 83(9): 3563-3571.
[24] Hu G Z, Liu Y C, Zhao J, et al. Selective response of dopamine in the presence of ascorbic acid on l-cysteine self-assembled gold electrode[J]. Bioelectrochemistry, 2006, 69(2): 254-257.
[25] Barlow S T, Louie M, Hao R, et al. Electrodeposited gold on carbon-fiber microelectrodes for enhancing amperometric detection of dopamine release from pheochromocytoma cells[J]. Analytical Chemistry, 2018, 90(16): 10049-10055.
[26] Phan N T N, Li X C, Ewing A G. Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging[J]. Nature Reviews Chemistry, 2017, 1(6): UNSP 0048.
[27] Liu J T(刘俊桃), Liu Y L(刘艳玲), Cheng Z(程治), et al. Electrochemical monitoring of cell wall-regulated transient extracellular oxidative burst from single plant cells[J]. Journal of Electrochemistry(电化学), 2014, 21(1): 29-38. |