[1] Boulikas T. Common structural features of replication origins in all life forms[J]. Journal of Cellular Biochemistry, 1996, 60(3): 297-316.
[2] Orgel L E. The origin of life-a review of facts and speculations[J]. Trends in Biochemical Sciences, 1998, 23(12): 491-495.
[3] Baeissa A, Dave N, Smith B D, et al. DNA-functionalized monolithic hydrogels and gold nanoparticles for colorimetric DNA detection[J]. ACS Applied Materials and Interfaces,
2010, 2(12): 3594-3600.
[4] Zhang Y Y, Tang Z W, Wang J, et al. Hairpin DNA switch for ultrasensitive spectrophotometric detection of DNA hybridization based on gold nanoparticles and enzyme signal
amplification[J]. Analytical Chemistry, 2010, 82(15):6440-6446.
[5] Gao Y, Li B X. G-quadruplex DNAzyme-based chemiluminescence biosensing strategy for ultrasensitive DNA detection: combination of exonuclease III-assisted signal
amplification and carbon nanotubes-assisted background reducing[J]. Analytical Chemistry, 2013, 85(23): 11494-11500.
[6] Gao Y, Li B X. Exonuclease III-assisted cascade signal amplification strategy for label-free and ultrasensitive chemiluminescence detection of DNA[J]. Analytical Chemistry,
2014, 86(17): 8881-8887.
[7] Xiong E H, Yan X X, Zhang X H, et al. Exonuclease IIIassisted cascade signal amplification strategy for labelfree and ultrasensitive electrochemical detection of nucleic
acids[J]. Biosensors and Bioelectronics, 2017, 87: 732-736.
[8] Xiong E H, Zhang X H, Liu Y Q, et al. Ultrasensitive electrochemical detection of nucleic acids based on the dualsignaling electrochemical ratiometric method and exonuclease
III-assisted target recycling amplification strategy[J]. Analytical Chemistry, 2015, 87(14): 7291-7296.
[9] Xiong E, Li Z Z, Zhang X H, et al. Triple-helix molecular switch electrochemical ratiometric biosensor for ultrasensitive detection of nucleic acids[J]. Analytical Chemistry,
2017, 89(17): 8830-8835.
[10] Zhang H R, Xu J J, Chen H Y. Electrochemiluminescence ratiometry: a new approach to DNA biosensing[J].Analytical Chemistry, 2013, 85(11): 5321-5325.
[11] Chai Y, Tian D Y, Wang W, et al. A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system[J]. Chemical Communications, 2010, 46(40): 7560-7562.
[12] Huang J H, Su X F, Li Z G. Enzyme-free and amplified fluorescence DNA detection using bimolecular beacons [J]. Analytical Chemistry, 2012, 84(14): 5939-5943.
[13] Liu G, Li J, Feng D Q, et al. Silver nanoclusters beacon as stimuli-responsive versatile platform for multiplex DNAs detection and aptamer-substrate complexes sensing[J]. Analytical Chemistry, 2016, 89(1): 1002-1008.
[14] Liu S F, Zhang C X, Ming J J, et al. Amplified detection of DNA by an analyte-induced Y-shaped junction probe assembly followed with a nicking endonuclease-mediated
autocatalytic recycling process[J]. Chemical Communications,2013, 49(72): 7947-7949.
[15] Hu R, Liu T, Zhang X B, et al. Multicolor fluorescent biosensor for multiplexed detection of DNA[J]. Analytical Chemistry, 2014, 86(10): 5009-5016.
[16] He J A, Zhao F, Wu C L, et al. Development of a smart dynamic surface chemistry for surface plasmon resonance-based sensors for the detection of DNA molecules
[J]. Journal of Materials Chemistry B, 2013, 1(40): 5398-5402.
[17] Diao W, Tang M, Ding S J, et al. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices[
J]. Biosensors and Bioelectronics, 2018, 100:228-234.
[18] Zang Y, Lei J P, Zhang L, et al. In situ generation of electron acceptor for photoelectrochemical biosensing via hemin-mediated catalytic reaction[J]. Analytical Chemistry,
2014, 86(24): 12362-12368.
[19] Liu S L, Li C, Cheng J, et al. Selective photoelectrochemical detection of DNA with high-affinity metallointercalator and tin oxide nanoparticle electrode[J].Analytical Chemistry,
2006, 78(13): 4722-4726.
[20] Li C X, Wang H Y, Shen J, et al. Cyclometalated iridium complex-based label-free photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification[
J].Analytical Chemistry, 2015, 87(8): 4283-4291.
[21] Shankar K, Basham J I, Allam N K, et al. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry[J]. The Journal of Physical
Chemistry C, 2009, 113(16): 6327-6359.
[22] Tarwal N L, Patil P S. Enhanced photoelectrochemical performance of Ag-ZnO thin films synthesized by spray pyrolysis technique[J]. Electrochimica Acta, 2011, 56(18):
6510-6516.
[23] Li D, Jia J L, Zheng T, et al. Construction and characterization of visible light active Pd nano-crystallite decorated and C-N-S-co-doped TiO2 nanosheet array photoelectrode
for enhanced photocatalytic degradation of acetylsalicylic acid[J]. Applied Catalysis B: Environmental, 2016, 188:259-271.
[24] Chang X W, Liu H L, Chen Q H, et al. Preparation of graphene film decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism[J]. Carbon, 2014, 66(3): 450-458.
[25] Lee Y L, Lo Y S. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe[J]. Advanced Functional Materials, 2009, 19(4): 604-609.
[26] Ge L, Sun X M, Hong Q, et al. Ratiometric catalyzed-assembly of nanocluster beacons: a nonenzymatic approach for amplified DNA detection[J]. ACS Applied Materials
and Interfaces, 2017, 9(37): 32089-32096.
[27] Hun X, Meng Y, Wang S S, et al. Mismatched catalytic hairpin assembly coupling hydroxylamine-o-sulfonic acid as oxide for DNA assay[J]. Sensors and Actuators B: Chemical,
2018, 254: 347-353.
[28] Wang Y, Gan N, Zhou Y, et al. Novel label-free and highthroughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification[J]. Biosensors and Bioelectronics, 2017, 97:100-106.
[29] Kivlehan F, Mavr佴F, Talini L, et al. Real-time electrochemical monitoring of isothermal helicase-dependent amplification of nucleic acids[J]. Analyst, 2011, 136(18):3635-3642.
[30] Ma F, Liu M, Tang B, et al. Sensitive quantification of microRNAs by isothermal helicase-dependent amplification[J]. Analytical Chemistry, 2017, 89(11): 6182-6187.
[31] Chen Y, Xu J, Su J, et al. In situ hybridization chain reaction amplification for universal and highly sensitive electrochemiluminescent detection ofDNA[J].AnalyticalChemistry,
2012, 84(18): 7750-7755.
[32] Ge Z L, Lin M H, Wang P, et al. Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor[J]. Analytical Chemistry, 2014, 86(4): 2124-2130.
[33] Yao G H, Liang R P, Yu X D, et al. Target-triggering multiplecycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance
techniques[J].Analytical Chemistry, 2014, 87(2): 929-936.
[34] Shen W, Deng H M, Gao Z Q. Gold nanoparticle-enabled real-time ligation chain reaction for ultrasensitive detection of DNA[J]. Journal of the American Chemical Society,
2012, 134(36): 14678-14681.
[35] Deng H, Xu Y, Liu Y H, et al. Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection ofDNAsequence[J].AnalyticalChemistry, 2012,84(3): 1253-1258.
[36] Zhang K Y, Lv S Z, Lin Z Z, et al. Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification
and enzymatic biocatalytic precipitation[J]. Biosensors and Bioelectronics, 2018, 101: 159-166.
[37] Yan H, Xu Y C, Lu Y, et al. Reduced graphene oxidebased solid-phase extraction for the enrichment and detection of microRNA[J]. Analytical Chemistry, 2017, 89 (19): 10137-10140.
[38] Jiao M, Jie G F, Tan L, et al. AgNPs-3D nanostructure enhanced electrochemiluminescence of CdSe quantum dot coupled with strand displacement amplification for sensitive biosensing of DNA[J]. Analytica Chimica Acta,2017, 983: 166-172.
[39] Yin D, Tao Y Y, Tang L, et al. Cascade toehold-mediated strand displacement along with non-enzymatic target recycling amplification for the electrochemical determination
of the HIV-1 related gene[J]. Microchimica Acta,2017, 184(10): 3721-3728.
[40] Zheng A X, Li J, Wang J R, et al. Enzyme-free signal amplification in the DNAzyme sensor via target-catalyzed hairpin assembly[J]. Chemical Communications, 2012,48(25): 3112-3114.
[41] Li C X, Li Y X, Xu X, et al. Fast and quantitative differentiation of single-base mismatched DNA by initial reaction rate of catalytic hairpin assembly[J]. Biosensors and Bioelectronics, 2014, 60: 57-63.
[42] Ma C, Liu H Y, Zhang L N, et al. Multiplexed aptasensor for simultaneous detection of carcinoembryonic antigen and mucin-1 based on metal ion electrochemical labels
and Ru(NH3)63+ electronic wires[J]. Biosensors and Bioelectronics,2018, 99: 8-13.
[43] Tabrizi M A, Shamsipur M, Saber R, et al. A high sensitive visible light-driven photoelectrochemical aptasensor for shrimp allergen tropomyosin detection using graphitic
carbon nitride-TiO2 nanocomposite[J].Biosensors andBioelectronics,2017, 98: 113-118.
[44] Guo Q Q, Chen Y, Song Z P, et al. Label-free and enzyme-free sensitive fluorescent detection of human immunodeficiency virus deoxyribonucleic acid based on hybridization
chain reaction[J]. Analytica Chimica Acta, 2014,852: 244-249.
[45] Yang Y J, Huang J, Yang X H, et al. Gold nanoparticle based hairpin-locked-DNAzyme probe for amplified miRNA imaging in living cells[J]. Analytical Chemistry,2017, 89(11): 5850-5856.
[46] Quan K, Huang J, Yang X H, et al. An enzyme-free and amplified colorimetric detection strategy via target-aptamer binding triggered catalyzed hairpin assembly [J].Chemical Communications, 2015, 51(5): 937-940.
[47] Meng A Y, Zhu B C, Zhong B, et al. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity[J]. Applied Surface Science,2017, 422: 518-527.
[48] Cui L, Li Y Y, Lu M F, et al. An ultrasensitive electrochemical biosensor for polynucleotide kinase assay based on gold nanoparticle-mediated lambda exonuclease cleavage-
induced signal amplification[J]. Biosensors and Bioelectronics,2018, 99: 1-7.
[49] Chen Y X, Huang K J, Lin F, et al. Ultrasensitive electrochemical sensing platform based on graphene wrapping SnO2 nanocorals and autonomous cascade DNA duplication
strategy[J]. Talanta, 2017, 175: 168-176.
[50] Wang ZH, Sun N, He Y, et al. DNA assembled gold nanoparticles polymeric network blocks modular highly sensitive electrochemical biosensors for protein kinase activity
analysis and inhibition[J]. Analytical Chemistry, 2014, 86(12): 6153-6159.
[51] Li S G, Zhu W, Xue Y C, et al. Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene-CdS nanocomposites[J]. Biosensors and
Bioelectronics, 2015, 64: 611-617.
[52] Zhang L, Sun Y, Liang Y Y, et al. Ag nanoclusters could efficiently quench the photoresponse of CdS quantum dots for novel energy transfer-based photoelectrochemical
bioanalysis[J]. Biosensors and Bioelectronics, 2016, 85:930-934.
[53] Wang G L, Liu K L, Shu J X, et al. A novel photoelectrochemical sensor based on photocathode of PbS quantum dots utilizing catalase mimetics of bio-bar-coded platinum
nanoparticles/G-quadruplex/hemin for signal amplification[J]. Biosensors and Bioelectronics, 2015, 69: 106-112.
[54] Gao Z Q, Tansil N C. An ultrasensitive photoelectrochemical nucleic acid biosensor[J]. Nucleic Acids Research,2005, 33(13): e123.
[55] Xiong E, Yan X, Zhang X H, et al. A new photoelectrochemical biosensor for ultrasensitive determination of nucleic acid based on three-stage cascade signal amplification
strategy[J]. Analyst, 2018, 143: 2799-2806.
|