[1] Yuan S(袁双), Zhu Y H(朱云海), Wang S(王赛), et al. Micro/nano structured electrode materials for sodium batteries[J]. Journal of Electrochemistry(电化学), 2016, 22(5): 464-476.
[2] Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
[3] Yan L T, Rui X H, Chen G, et al. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage[J]. Nanoscale, 2016, 8(16): 8443-8465.
[4] Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[5] Ni J F, Fu S D, Wu C, et al. Superior sodium storage in Na2Ti3O7 nanotube arrays through surface engineering[J]. Advanced Energy Materials, 2016, 6(11): 1502568.
[6] Fu S D, Ni J F, Xu Y, et al. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries[J]. Nano Letters, 2016, 16(7): 4544-
4551.
[7] Wang Y, Cao G Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries[J]. Advanced Materials, 2008, 20(12): 2251-2269.
[8] Wei Q L, Liu J, Feng W, et al. Hydrated vanadium pentoxide with superior sodium storage capacity[J]. Journal of Materials Chemistry A, 2015, 3(15): 8070-8075.
[9] Chernova N A, Roppolo M, Dillon A C, et al. Layered vanadium and molybdenum oxides: Batteries and electrochromics[J]. Journal of Materials Chemistry, 2009, 19(17): 2526-2552.
[10] Niu C J, Meng J S, Han C H, et al. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries[J]. Nano Letters, 2014, 14(5): 2873-2878.
[11] Rout C S, Kim B H, Xu X, et al. Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer[J]. Journal of the American Chemical Society, 2013, 135(23): 8720-8725.
[12] Feng J, Sun X, Wu C Z, et al. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors[J]. Journal of the American Chemical Society, 2011, 133(44): 17832-17838.
[13] Chen S Q, Wu C, Shen L F, et al. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(48): 1700431.
[14] Liu J, Tang K, Song K P, et al. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries[J]. Nanoscale, 2014, 6(10): 5081-5086.
[15] Brown E, Acharya J, Pandey G P, et al. Highly stable three lithium insertion in thin V2O5 shells on vertically aligned carbon nanofiber arrays for ultrahigh-capacity lithium ion battery cathodes[J]. Advanced Materials Interfaces, 2016, 3(23): 1600824.
[16] Hua L, Ma Z Y, Shi P P, et al. Ultrathin and large-sized vanadium oxide nanosheets mildly prepared at room temperature for high performance fiber-based supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(6): 2483-2487.
[17] Ren X C, Zhai Y J, Zhu L, et al. Fabrication of various V2O5 hollow microspheres as excellent cathode for lithium storage and the application in full cells[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17205-17211.
[18] Zhang P F, Zhao L Z, An Q Y, et al. A high-rate V2O5 hollow microclew cathode for an all-vanadium-based lithium-ion full cell[J]. Small, 2016, 12(8): 1082-1090.
[19] An Q Y, Wei Q L, Zhang P F, et al. Three-dimensional interconnected vanadium pentoxide nanonetwork cathode for high-rate long-life lithium batteries[J]. Small, 2015, 11(22): 2654-2660.
[20] Yan B, Li X F, Bai Z M, et al. Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance[J]. Nano Energy, 2016, 24(24): 32-44.
[21] Lee J H, Kim J M, Kim J H, et al. Toward ultrahigh-capacity V2O5 lithium-ion battery cathodes via one-pot synthetic route from precursors to electrode sheets[J]. Advan-
ced Materials Interfaces, 2016, 3(14): 1600173.
[22] Ganduglia-Pirovano M V, Hofmann A, Sauer J. Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges[J]. Surface Science Reports, 2007, 62(6): 219-270.
[23] Kang T D, Chung J S, Yoon J G. Anisotropic optical response of nanocrystalline V2O5 thin films and effects of oxygen vacancy formation[J]. Physics Letters B, 2014, 89(9): 94201-94206.
[24] Ma W Y, Zhou B, Wang J F, et al. Effect of oxygen vacancy on Li-ion diffusion in a V2O5 cathode: A first-principles study[J]. Journal of Physics D: Applied Physics, 2013, 46(10): 105306-105313.
[25] Yu M H, Zeng Y, Han Y, et al. Valence-optimized vanadium oxide supercapacitor electrodes exhibit ultrahigh capacitance and super-long cyclic durability of 100000 cycles[J]. Advanced Functional Materials, 2015, 25(23): 3534-3540.
[26] Peng X, Zhang X M, Wang L, et al. Hydrogenated V2O5 nanosheets for superior lithium storage properties[J]. Advanced Functional Materials, 2016, 26(5): 784-791.
[27] Song H F, Liu C F, Zhang C K, et al. Self-doped V4+-V2O5 nanoflake for 2 Li-ion intercalation with enhanced rate and cycling performance[J]. Nano Energy, 2016, 22: 1-10.
[28] Lou S F, Cheng X Q, Zhao Y, et al. Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability[J]. Nano Energy, 2017, 34: 15-25.
[29] Li X Y, Liu C F, Zhang C K, et al. Effects of preinserted Na ions on Li-ion electrochemical intercalation properties of V2O5[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24629-24637.
[30] Uchaker E, Zheng Y Z, Li S, et al. Better than crystalline: amorphous vanadium oxide for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(43): 18208-
18214.
[31] Liu S Q, Tong Z Q, Zhao J P, et al. Rational selection of amorphous or crystalline V2O5 cathode for sodium-ion batteries[J]. Physical Chemistry Chemical Physics, 2016, 18(36): 25645-25654.
[32] Hou Z L, Zou Z G, Wan Z D, et al. The preparation of VO2(B) cathode material for lithium-ion battery with high capacity and good cycling performance[M]. MATEC Web of Conferences, 2016, 88(88): 01005.
[33] Lee S, Sun X G, Lubimtsev A A, et al. Persistent electrochemical performance in epitaxial VO2(B)[J]. Nano Letters, 2017, 17(4): 2229-2233.
[34] Ren G, Hoque M N F, Pan X, et al. Vertically aligned VO2(B) nanobelt forest and its three-dimensional structure on oriented graphene for energy storage[J]. Journal of Materials Chemistry A, 2015, 3(20): 10787-10794.
[35] Wang H K, Li W Z, Fei H F, et al. Facile hydrothermal growth of VO2 nanowire, nanorod and nanosheet arrays as binder free cathode materials for sodium batteries[J]. RSC Advances, 2016, 6(17): 14314-14320.
[36] Xia X H, Chao D L, Ng C F, et al. VO2 nanoflake arrays for supercapacitor and Li-ion battery electrodes: performance enhancement by hydrogen molybdenum bronze as an efficient shell material[J]. Materials Horizons, 2015, 2(2): 237-244.
[37] Gong Z L(龚正良), Zhang W(张炜), Lv D P(吕东平), et al. Application of synchrotron radiation based electrochemical in-situ techniques to study of electrode materials for lithium-ion batteries[J]. Journal of Electrochemistry(电化学), 2013, 19(9): 512-522.
[38] Xu N, Ma X X, Wang M F, et al. Stationary full Li-ion batteries with interlayer-expanded V6O13 cathodes and lithiated graphite anodes[J]. Electrochimica Acta, 2016, 203: 171-177.
[39] Kim H, Kim D Y, Kim Y, et al. Na insertion mechanisms in vanadium oxide nanotubes for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1477-1485.
[40] Sun R M, Wei Q L, Sheng J Z, et al. Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage[J]. Nano Energy, 2017, 35(35): 396-404.
[41] Fang W Y, Zhao H B, Xie Y P, et al. Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes[J]. ACS Applied Materials & Interfaces, 2015, 7(23): 13044-13052.
[42] Xiong F Y, Tan S S, Wei Q L, et al. Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage[J]. Nano Energy, 2017, 32(32): 347-352.
[43] Xu Y N, Wei Q L, Xu C, et al. Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode[J]. Advanced Energy Materials, 2016, 6(14): 1600389.
[44] Wang X P, Niu C J, Meng J S, et al. Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability[J]. Advanced Energy Materials, 2015, 5(17): 1500716.
[45] Jiang Y, Yang Z Z, Li W H, et al. Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(10): 1402104.
[46] Rui X H, Sun W P, Wu C, et al. An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network[J]. Advanced Materials, 2015, 27(42): 6670-6676.
[47] Fang Y J, Xiao L F, Ai X P, et al. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries[J]. Advanced Materials, 2015, 27(39): 5895-5900.
[48] Nan X H, Zhang C K, Liu C F, et al. Highly efficient storage of pulse energy produced by triboelectric nanogenerator in Li3V2(PO4)3/C cathode Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(1): 862-870.
[49] Klee R, Aragon M J, Lavela P, et al. Na3V2(PO4)3/C nano-rods with improved electrode-electrolyte interface as cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23151-23159.
[50] Li H S, Peng L L, Zhu Y, et al. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials[J]. Energy & Environmental Science, 2016, 9(11): 3399-3405.
[51] Liu P C, Zhou D H, Zhu K G, et al. Bundle-like α'-NaV2O5 mesocrystals: from synthesis, growth mechanism to analysis of Na-ion intercalation/deintercalation abilities[J]. Nanoscale, 2016, 8(4): 1975-1985.
[52] Kim J K, Senthilkumar B, Sahgong S H, et al. New chemical route for the synthesis of β-Na0.33V2O5 and its fully reversible Li intercalation[J]. ACS Applied Materials & Interfaces, 2015, 7(12): 7025-7032.
[53] Song H Q, Liu Y G, Zhang C P, et al. Mo-doped LiV3O8 nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(7): 3547-3558.
[54] Balogun M S, Luo Y, Lyu F, et al. Carbon quantum dot surface-engineered VO2 interwoven nanowires: A flexible cathode material for lithium and sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9733-9744.
[55] Zhou J H, Wang L, Yang M Y, et al. Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions[J]. Advanced Materials, 2017, 29(35): 1702061.
[56] Jiang Y, Zhou X F, Li D J, et al. Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering[J]. Advanced Energy Materials, 2018, 8(16): 1800068.
|