电化学(中英文) ›› 2019, Vol. 25 ›› Issue (1): 77-88. doi: 10.13208/j.electrochem.180543
高睿,王俊凯,胡中波,刘向峰*
收稿日期:
2018-06-19
修回日期:
2018-07-10
出版日期:
2019-02-28
发布日期:
2019-02-28
通讯作者:
刘向峰
E-mail:liuxf@ucas.ac.cn
基金资助:
GAO Rui, WANG Jun-kai, HU Zhong-bo, LIU Xiang-feng*
Received:
2018-06-19
Revised:
2018-07-10
Published:
2019-02-28
Online:
2019-02-28
Contact:
LIU Xiang-feng
E-mail:liuxf@ucas.ac.cn
摘要: 锂-空气电池被认为是最具潜力的新一代化学电源体系之一,具有能量密度高、质量轻便、可逆性高、环境污染小等优点. 但其电极上缓慢的氧还原(ORR)与氧析出(OER)动力学过程导致了能量效率降低、过电位高、循环性能差等问题,制约了锂-空气电池的发展. 双效正极催化剂的设计与开发是解决上述问题的重要途径之一. 作者通过总结近几年锂-空气电池正极催化剂的研究进展,并结合其课题组自身的工作,综述了锂-空气电池正极催化剂表界面调控及构效关系研究方面的最新进展,并展望了未来关于锂-空气电池研究的切入点,对设计、开发高效锂-空电池催化剂具有重要指导意义.
中图分类号:
高睿, 王俊凯, 胡中波, 刘向峰. 锂-空气电池正极催化剂表界面调控及构效关系研究进展[J]. 电化学(中英文), 2019, 25(1): 77-88.
GAO Rui, WANG Jun-kai, HU Zhong-bo, LIU Xiang-feng. Recent Developments in Surface/Interface Modulation and Structure-Performance Relationship of Cathode Catalysts for Li-Air Batteries[J]. Journal of Electrochemistry, 2019, 25(1): 77-88.
[1] Lu J, Li L, Park J B, et al. Aprotic and aqueous Li-O2 batteries[J]. Chemical Reviews, 2014, 114(11): 5611-5640. [2] Christensen J, Albertus P, Sanchez-Carrera R S, et al. A critical review of Li-air batteries[J]. Journal of The Electrochemical Society, 2012, 159(2): R1-R30. [3] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29. [4] Li H(李泓), Lv Y C(吕迎春). A review on electrochemical energy storage[J]. Journal of Electrochemistry(电化学), 2015, 21(5): 412-424. [5] Li L, Chang Z W, Zhang X B. Recent rrogress on the development of metal-air batteries[J]. Advanced Sustainable Systems, 2017, 1(10): 1700036. [6] Girishkumar G, Mccloskey B, Luntz A C, et al. Lithium-air battery: promise and challenges[J]. 2010, 1(14): 2193-2203. [7] Gittleson F S, Sekol R C, Doubek G, et al. Catalyst and electrolyte synergy in Li-O2 batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 3230-3237. [8] Lim H D, Lee B, Bae Y, et al. Reaction chemistry in rechargeable Li-O2 batteries[J]. Chemical Society Reviews, 2017, 46(10): 2873-2888. [9] Wang Y W, Wang B Z, Gu F, et al. Tuning electrochemical reactions in Li-O2 batteries[J]. Nano Advances, 2016, 1(1): 17-24. [10] Cao R, Lee J S, Liu M L, et al. Recent progress in non-precious catalysts for metal-air batteries[J]. Advanced Energy Materials, 2012, 2(7): 816-829. [11] Lee D U, Xu P, Cano Z P, et al. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries[J]. Journal of Materials Chemistry A, 2016, 4(19): 7107-7134. [12] Zhang P, Zhao Y, Zhang X B. Functional and stability orientation synthesis of materials and structures in aprotic Li-O2 batteries[J]. Chemical Society Reviews, 2018, 47(8): 2921-3004. [13] Fu Y(付月), Wang J(王金), Yu H Y(于海洋), et al. Application of electrospinning in lithium-air batteries[J]. Journal of Electrochemistry(电化学), 2018, 24(1): 46-55. [14] Xu S M, Liang X, Ren Z C, et al. Free-standing air cathodes based on 3D hierarchically porous carbon membranes: Kinetic overpotential of continuous macropores in Li-O2 batteries[J]. Angewandte Chemie-International Edition, 2018, 23(57): 6825-6829. [15] Gittleson F S, Ryu W H, Schwab M, et al. Pt and Pd catalyzed oxidation of Li2O2 and DMSO during Li-O2 battery charging[J]. Chemical Communications, 2016, 52(39): 6605-6608. [16] Chatterjee A, Or S W, Cao Y L. Transition metal hollow nanocages as promising cathodes for the long-term cyclability of Li-O2 batteries[J]. Nanomaterials(Basel, Switzerland), 2018, 8(5): DOI: 10.3390/nano8050308. [17] Chang Y Q, Dong S M, Ju Y H, et al. A carbon- and binder-free nanostructured cathode for high-performance nonaqueous Li-O2 battery[J]. Advanced Science, 2015, 2(8): 1500092. [18] Zhuo J L, Qing L Z, Yu W, et al. Recent progress in applying in situ/operando characterization techniques to probe the solid/liquid/gas interfaces of Li-O2 batteries[J]. Small Methods, 2017, 1(7): 1700150. [19] Zhou K B, Li Y D. Catalysis based on nanocrystals with well-defined facets[J]. Angewandte Chemie-International Edition, 2012, 51(3): 602-613. [20] Xie X W, Shen W J. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance[J]. Nanoscale, 2009, 1(1): 50-60. [21] Zhou K B, Wang X, Sun X M, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. Journal of Catalysis, 2005, 229(1): 206-212. [22] Xie X W, Li Y, Liu Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458(7239): 746-749. [23] Tian N, Zhou Z Y, Sun S G. Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112(50): 19801-19817. [24] Nicholas J F. An atlas of models of crystal surfaces[M]. gordon & breach: New York, 1965. [25] Xiao X L, Liu X F, Zhao H, et al. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance[J]. Advance Materials, 2012, 24(42): 5762-5766. [26] Gao R, Zhu J Z, Xiao X L, et al. Facet-dependent electrocatalytic performance of Co3O4 for rechargeable Li-O2 battery[J]. The Journal of Physical Chemistry C, 2015, 119(9): 4516-4523. [27] Su D W, Dou S X, Wang G X. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-O2 batteries[J]. Scientific Reports, 2014, 4: 5767. [28] Song K, Cho E, Kang Y M. Morphology and active-site engineering for stable round-trip efficiency Li-O2 batteries: a search for the most active catalytic site in Co3O4[J]. ACS Catalysis, 2015, 5(9): 5116-5122. [29] Zhu J Z, Ren X D, Liu J J, et al. Unraveling the catalytic mechanism of Co3O4 for the oxygen evolution reaction in a Li-O2 battery[J]. ACS Catalysis, 2014, 5(1): 73-81. [30] Zheng Y P, Song K, Jung J, et al. Critical descriptor for the rational design of oxide-based catalysts in rechargeable Li-O2 batteries: surface oxygen density[J]. Chemistry of Materials, 2015, 27(9): 3243-3249. [31] Yan D F, Li Y X, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J].Advance Materials, 2017, 29(48): 1606459. [32] Casas-Cabanas M, Binotto G, Larcher D, et al. Defect chemistry and catalytic activity of nanosized Co3O4[J]. Chemistry of Materials, 2009, 21(9): 1939-1947. [33] Jiang X D, Zhang Y P, Jiang J, et al. Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study[J]. The Journal of Physical Chemistry C, 2012, 116(42): 22619-22624. [34] Lu X, Li H. Fundamental scientific aspects of lithium batteries (II)—Defect chemistry in battery materials[J]. Energy Storage Science and Technology, 2013, 2(2): 157-164. [35] Hong J H, Jin C H, Yuan J, et al. Atomic defects in two-eimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis[J]. Advance Materials, 2017, 29(14): 1606434 [36] Chen C F, King G, Dickerson R M, et al. Oxygen-deficient BaTiO3-x perovskite as an efficient bifunctional oxygen electrocatalyst[J]. Nano Energy, 2015, 13: 423-432. [37] Cheng F Y, Zhang T R, Zhang Y, et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angewandte Chemie-International Edition, 2013, 52(9): 2474-2477. [38] Xu L, Jiang Q Q, Xiao Z H, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie- International Edition, 2016, 55(17): 5277-5281. [39] Wang Y Y, Zhang Y Q, Liu Z J, et al. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts[J]. Angewandte Chemie-International Edition, 2017, 56(21): 5867-5871. [40] Gao R, Liu L, Hu Z B, et al. The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li-O2 batteries[J]. Journal of Materials Chemistry A, 2015, 3(34): 17598-17605. [41] Gao R, Li Z Y, Zhang X L, et al. Carbon-dotted defective CoO with oxygen vacancies: A synergetic design of bifunctional cathode catalyst for Li-O2 batteries[J]. ACS Catalysis, 2015, 6(1): 400-406. [42] Oh S H, Black R, Pomerantseva E, et al. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries[J]. Nature Chemistry, 2012, 4(12): 1004- 1010. [43] Kang J, Kim J, Lee S, et al. Breathable carbon-free electrode: black TiO2 with hierarchically ordered porous structure for stable Li-O2 battery[J]. Advanced Energy Materials, 2017, 7(19): 1700814. [44] Zhang S P, Wang G, Jin J, et al. Self-catalyzed decomposition of discharge products on the oxygen vacancy sites of MoO3 nanosheets for low-overpotential Li-O2 batteries[J]. Nano Energy, 2017, 36: 186-196. [45] Wang J, Gao R, Zhou D, et al. Boosting the electrocatalytic activity of Co3O4 nanosheets for a Li-O2 battery through modulating inner oxygen vacancy and exterior Co3+/Co2+ ratio[J]. ACS Catalysis, 2017, 7(10): 6533-6541. [46] Qu L T, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4(3): 1321-1326. [47] Zhang J T, Zhao Z H, Xia Z H, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology, 2015, 10(5): 444-452. [48] Sun B, Chen S Q, Liu H, et al. Mesoporous carbon nanocube architecture for high-performance lithium-oxygen batteries[J]. Advanced Functional Materials, 2015, 25(28): 4436-4444. [49] Park J B, Lee J, Yoon C S, et al. Ordered mesoporous carbon electrodes for Li-O2 batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13426-13431. [50] Guo Z, Zhou D, Dong X, et al. Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li-O2 batteries[J]. Advanced Materials, 2013, 25(39): 5668. [51] Thotiyl M M O, Freunberger S A, Peng Z, et al. The carbon electrode in nonaqueous Li-O2 cells[J]. Journal of the American Chemical Society, 2013, 135(1): 494-500. [52] Zhang X L, Gao R, Li Z Y, et al. Enhancing the performance of CoO as cathode catalyst for Li-O2 batteries through confinement into bimodal mesoporous carbon[J]. Electrochimica Acta, 2016, 201: 134-141. [53] Gao R, Zhou Y, Liu X F, et al. N-Doped defective carbon layer encapsulated W2C as a multifunctional cathode catalyst for high performance Li-O2 Battery[J]. Electrochimica Acta, 2017, 245: 430-437. [54] Xing Y, Yang Y, Chen R J, et al. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery[J]. Small, 2018,14(19): UNSP 1704366. [55] Wang J C, Kondrat S A, Wang Y Y, et al. Au-Pd Nanoparticles dispersed on composite titania/rraphene oxide-supports as a highly active oxidation catalyst[J]. ACS Catalysis, 2015, 5(6): 3575-3587. [56] Wang N, Sun Q M, Bai R S, et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation[J]. Journal of the American Chemical Society, 2016, 138(24): 7484-7487. [57] Lu Y C, Xu Z C, Gasteiger H A, et al. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemical Society, 2010, 132(35): 12170-12171. [58] Lei Y, Lu J, Luo X Y, et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: Application for rechargeable lithium-O2 battery[J]. Nano Letters, 2013, 13(9): 4182-4189. [59] Jeong Y S, Park J B, Jung H G, et al. Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium-air batteries[J]. Nano Letters, 2015, 15(7): 4261-4268. [60] Lu J, Lee Y J, Luo X Y, et al. A lithium-oxygen battery based on lithium superoxide[J]. Nature, 2016, 529(7586): 377-382. [61] Fan W G, Wang B Z, Guo X X, et al. Nanosize stabilized Li-deficient Li2-xO2 through cathode architecture for high performance Li-O2 batteries[J]. Nano Energy, 2016, 27: 577-586. [62] Zhang X L, Gong Y D, Li S Q, et al. Porous perovskite La0.6Sr0.4Co0.8Mn0.2O3 nanofibers loaded with RuO2 nano-sheets as an efficient and durable bifunctional catalyst for rechargeable Li-O2 batteries[J]. ACS Catalysis, 2017, 7(11): 7737-7747. [63] Gong Y D, Zhang X L, Li Z P, et al. Perovskite La0.6Sr0.4Co0.2Fe0.8O3 nanofibers decorated with RuO2 nanoparticles as an efficient bifunctional cathode for rechargeable Li-O2 batteries[J]. ChemNanoMat, 2017, 3(7): 485-490. [64] Gao R, Yang Z Z, Zheng L R, et al. Enhancing the catalytic activity of Co3O4 for Li-O2 batteries through the synergy of surface/interface/doping engineering[J]. ACS Catalysis, 2018, 8(3): 1955-1963. [65] Gao R, Liang X, Yin P G, et al. An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability[J]. Nano Energy, 2017, 41: 535-542. [66] Zhu Z, Kushima A, Yin Z Y, et al. Anion-redox nanolithia cathodes for Li-ion batteries[J]. Nature Energy, 2016, 1: 16111.
|
[1] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[2] | 马海斌, 周晓延, 李嘉艺, 程洪飞, 马吉伟. 用于促进碱性介质中析氢反应动力学的异质结构电催化剂的合理设计[J]. 电化学(中英文), 2024, 30(1): 2305101-. |
[3] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[4] | 黄荣钦, 廖卫平, 晏梦璇, 刘石, 李远明, 康雄武. 磷掺杂的Ru-Pt合金催化剂及其电催化碱性析氢性能[J]. 电化学(中英文), 2023, 29(5): 2203081-. |
[5] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[6] | 冯辛, 刘博文, 郭可鑫, 范林丰, 王根香, 次素琴, 温珍海. 基于阳极甘油氧化电催化的碱/酸混合电解制氢研究[J]. 电化学(中英文), 2023, 29(2): 2215005-. |
[7] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[8] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[9] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[10] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[11] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[12] | 王英超, 马自在, 吴一凡, 王孝广. GCP载钯颗粒复合材料的制备及其电化学合成氨性能研究[J]. 电化学(中英文), 2022, 28(5): 2104091-. |
[13] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[14] | 宋亚杰, 孙雪, 任丽萍, 赵雷, 孔凡鹏, 王家钧. 同步辐射表征技术在金属空气电池研究中的应用[J]. 电化学(中英文), 2022, 28(3): 2108461-. |
[15] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位 57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||