多巴胺(Dopamine,DA)是一种重要的神经递质,其准确检测对临床诊断和神经科学研究至关重要。由于多巴胺具有电化学活性,常通过电化学方法进行检测,电化学方法因其操作简便、响应迅速、适用于在体分析而备受关注。本文本研究采用HAuCl4还原的方法在二硫化钼纳米片上修饰金纳米颗粒制备了Au@MoS2复合材料,旨在构建一种高灵敏度的多巴胺电化学传感器,以增强DA吸附,从而提升检测多巴胺的性能。SEM、TEM、EDS、XPS、XRD证实了Au@MoS2的成功合成,并且金纳米颗粒均匀分布在MoS2纳米片表面。电化学表征结果表明,Au@MoS2/GCE在10 μmol·L-1 DA溶液中表现出明显的氧化峰,且电化学活性显著优于未修饰的GCE和纯MoS2。DPV结果表明,Au@MoS2/GCE在800 nmol·L-1至10 μmol·L-1范围内对DA呈现良好的线性关系,检出限(LOD)低至78.9 nmol·L-1(S/N=3),并且对其他共存干扰物质具有优良的选择性。此外,在Au@MoS2表面进行激光诱导产生带有表面带有大量负电荷缺陷的LIAu@MoS2,,实现了对低浓度DA的超灵敏检测。此外,激光诱导的Au@MoS2(LIAu@MoS2)由于表面富含大量带负电荷的缺陷,能够实现对低浓度DA的超灵敏检测。综上所述,本文成功制备了Au@MoS2复合材料,并构建高灵敏度的多巴胺电化学传感器。该传感器具有成本低廉、操作简单和易于量产的特点,显著提升了对DA的传感性能,在生物传感领域具有潜在的应用前景。
癌症转移是全球癌症患者的主要死因,也是治疗癌症的主要挑战之一。循环肿瘤细胞(CTCs)在癌症转移过程中起着核心作用。但是,CTCs在外周血中的含量极少,在实际样本中检测CTCs极具挑战性,故高效富集和早期检测CTCs对于及时诊断疾病至关重要。本工作利用免疫磁分离技术和脂质体信号放大策略构建了一种创新的、精密的用于检测MCF-7细胞(人类乳腺癌细胞)的SNCE生物传感器。以包埋铂纳米颗粒(Pt NPs)的脂质体为信号探针,以自制的金超微电极(Au UME)为工作电极。Pt NPs与UME的每次有效碰撞都会产生可区分的阶梯型电流。根据细胞浓度与碰撞频率(单位时间内阶梯型电流数量)之间的关系,对MCF-7细胞进行了精确定量,实现了对MCF-7细胞的高灵敏度和特异性检测。该SNCE生物传感器线性范围为10 cells·mL-1至105 cells·mL-1,检测限低至5 cells·mL-1。此外,在复杂样本中成功检测到MCF-7细胞,表面SNCE生物传感器在患者样本检测方面具有巨大潜力。
利用金纳米盘电极的极小尺寸(Au NEs,半径小于50 nm),研究了在纳米电极表面产生的单个氢纳米气泡,以评价其析氢性能。我们研究了Au NEs在不同浓度硫酸中的电化学行为,结果表明CV的形状随着硫酸浓度的增加从S型波逐渐变为峰型波。根据纳米气泡的形成机理,得出了产生单个纳米气泡的最小硫酸浓度,表明此时氢气在电极表面达到了临界过饱和,产生了单个纳米气泡和电化学峰型响应。并通过微动力学模型评价了金纳米电极和金@二硫化钨量子点纳米电极(Au@WS2 NEs)的析氢反应(HER)活性。结果表明,在Au NEs表面的临界溶解氢气浓度约为0.4 mol·L-1,相当于室温和大气压下溶于水中氢气过饱和度的500倍。此外,通过对单个纳米气泡形成前的电流强度的微动力学分析,发现Au@WS2 NEs和Au NEs析氢反应的决速步骤分别为Heyrovsky step和Volmer step,Au@WS2 NEs决速步的标准速率常数(k0)约为Au NEs的12倍,表明Au@WS2 NEs具有更高的HER活性。随着HER活性的增加,气泡形成电位转向更正的电位。这项工作利用极小尺寸的纳米电极甚至包括分子尺寸的纳米电极对其表面产生的单个氢纳米气泡进行研究,为纳米气泡电化学研究提供了基础,并为后续基于气泡的应用提供了新的思路,可以帮助我们设计和筛选应用于基础电化学、电催化和能源相关领域的新型纳米材料,特别是在单个实体水平上。
本文基于电化学-热-力(ETM)耦合模型,对快速充电下锂离子电池(LIB)的老化特性进行了数值研究。首先,通过COMSOL Multiphysics建立并求解了ETM耦合模型。随后,对电池进行了长循环测试,以探索LIB的老化特性。具体而言,从SEI的非均匀分布、SEI生长、热稳定性和应力特性等方面分析了充放电倍率和循环次数的增加对电池老化的影响。结果表明,充放电倍率和循环的增加导致SEI不均匀程度的增加,以及因SEI生成所造成的电池容量损失也随之增加。同时充放电倍率和循环数的增加也分别导致电池的发热量增加和散热率降低,从而使得电极材料热稳定性下降。此外,随着循环的进行,正极材料的von Mises应力高于负极材料,正极材料表现为拉伸变形,负极材料表现为压缩变形,正极的有效锂离子浓度低于负极的有效锂离子浓度,证明了电池正极材料在长循环下所发生的拉伸型断裂主导了容量损失过程。上述研究有助于研究人员进一步探索锂离子电池在快速充电条件下的老化行为,并采取相应的预防措施。
碱性电解水析氢反应作为获取绿色氢能源的重要途径具有广泛的研究意义和应用价值,但其缓慢的电极反应动力学及较高的过电位需要高效稳定的催化剂来加速反应过程。目前商用的铂(Pt)基催化剂因高昂的成本限制了其规模化应用。设计高效、低过电位的非 Pt 电催化剂仍然是一个重大挑战。钌(Ru)基催化剂因具有类 Pt 的活性氢结合能而受到广泛关注。本文以富勒醇和三聚氰胺为基体原料,与氯化钴和氯化钌在 150 °C 水热反应 24 小时,随后在氩气/氢气(5%)混合气氛下 600 °C热解处理,成功在氮掺杂碳纳米管(N-CNTs)上修饰了钴钌(CoRu)纳米合金,制备了一种新型高效的 Co,Ru 双金属电催化剂。得益于 Co 和 Ru 位点之间的电子通信,所得 CoRu@N-CNTs 具有优异的电催化析氢反应活性。在 1 mol·L -1 氢氧化钾水溶液中达到 10 mA·cm -2 的电流密度,所需过电位仅为 19 mV,塔菲尔斜率为 26.19 mV·dec-1,优于基准 Pt/C 催化剂。本研究将为高效析氢电催化剂的设计与制造开辟一条新的道路,有力推动电解水制氢技术在能源存储与转化领域的应用推广,为我国“碳达峰与碳中和”战略目标的实施蓄势赋能。
单颗粒碰撞电化学通过溶液中颗粒与电极的随机碰撞,以单颗粒分辨率直接表征实体/颗粒,获得丰富的物理化学信息,成为近二十年来电分析化学的前沿之一。有趣的是,(微/纳米级)传感电极从可极化的液/液(汞/液)界面发展到固/液界面,再到液/液界面(即两互不相溶电解质溶液界面,ITIES),仿佛完成了一个循环(但实际上并没有)。ITIES凭借其可极化性(在水/α,α,α-三氟甲苯界面处高达1.1 V的电势窗口)和高重现性,已成为蓬勃发展的SECE中最新的传感电极。SECE在固/液界面发展起来的四种测量模式(直接电解、介导电解、电流屏蔽和电荷置换)也在微型ITIES上得到了充分实现。本文将从基本概念、运行机制和最新进展(例如离子体的发现、法拉第离子转移的屏蔽效应等)的角度讨论ITIES中的这四种模式,并展望这一新兴领域未来的发展方向。
由于锂硫电池高理论能量密度(2600 Wh·kg-1)和比容量(1675 mAh·g-1),被认为是集成可再生能源系统用于大规模能量存储的潜在解决方案之一。但由于“穿梭效应”、容量衰减和体积变化等障碍阻碍了锂硫电池的成功商业化。现阶段已提出各种策略以克服技术障碍,本文综述了不同金属氮化物作为高性能锂硫电池阴极宿主材料的应用,总结了不同宿主材料的设计策略,讨论了金属氮化物性质与其电化学性能之间的关系,最后,提出了对金属氮化物设计和发展的合理建议,以及促进未来突破的想法。我们希望本文能够引起更多关于金属氮化物及其衍生物的关注,并进一步促进锂硫电池的电化学性能。
水系超级电容器具有快速充放电特性,已经成为一种重要的电化学储能器件。然而,它们的应用受到了较窄电压窗口的制约。尽管近年来盐包水(WIS)电解质的设计已显著克服了这一应用缺陷,但工作电压窗口高达2.5 V的WIS体系仍然非常稀缺。为了丰富超级电容器所用高压水系电解质的类型,本文基于三氟甲烷磺酸四甲基铵盐(TMAOTf)的电化学惰性,报道了一种由TMAOTf、双三氟甲基磺酸亚酰胺锂(LiTFSI)、水(H2O)和乙腈(ACN)组成的TMAOTf基杂化电解质,鉴于ACN对自由水的配位效应、Li+的溶剂化效应以及TFSI-的化学惰性,TMAOTf基杂化电解质展现出优良的非燃特性,且其电化学稳定窗口(3.35 V)远比目前所报道经典WIS电解质的要宽。进一步将这种杂化电解质与商业活性炭电极(YP-50F)所匹配,所构筑的水系超级电容器能够输出宽的工作电压窗口(2.5 V)、高的倍率性能(10A·g-1下的容量保持率为80%)、长的循环寿命(45,000次循环)和优异的低温性能(-20 oC下循环2000次的容量保留率为99.99%),克服了水系超级电容器电压窗口与循环寿命的冲突。因此,这种TMAOTf基复合水系电解质的设计不仅丰富了具有长循环寿命和高工作电压窗口水系超级电容器的类型,也证明了电解质杂化策略对构筑高性能储能器件的有效性,为碳中和目标的实现蓄势赋能。
基于纳米移液管的电化学扫描探针技术是一种多功能非接触成像工具,并被广泛应用于生物学研究。除了一般的表面形貌成像研究外,它在局部递送生物活性分子方面的潜力也逐渐显现。在这篇简短综述中,我们介绍了这种技术在单细胞研究中的应用,特别是局部递送。我们总结并比较了三种递送模式的工作原理,包括阻抗脉冲、压力驱动和电渗流驱动递送,还回顾了这些模式在单细胞研究中的应用。此外,本文还讨论了基于扫描离子电导显微镜的递送技术所面临的技术挑战及其在医学和药理学研究中日益增长的影响力。
电催化二氧化碳还原是一种有望解决全球能源和环境危机的变革性技术。然而,其实际应用面临着两大关键挑战:一是分离混合还原产物的过程复杂且能耗高,二是所使用碳源(反应物)的经济可行性。为了同时解决这些挑战,固态电解质(SSE)反应器的研究正在受到日益广泛的关注。在这篇综述中,我们着眼于探讨将SSE应用于电化学CO2捕获和转化串联系统的可行性。我们首先讨论了SSE反应器的结构和基本原理,随后介绍了其在上述两个领域及串联电解的应用实例。与传统的H型电解池、流动池及膜电极电解池相比,SSE的关键创新在于阴离子交换膜和阳离子交换膜之间部署的SSE层,它实现了高效的离子传输,且可通过去离子水或湿润的氮气流有效地分离离子传导和产物收集功能。目标产物可以在SSE中间层通过两极离子复合形成,并通过多孔的SSE层被流动介质高效地带走,产生纯净的液相产物。由于CO2还原反应可以生成一系列液体产物,过去几年中先进催化剂的开发也进一步推动了SSE反应器在高效化学品生产中的实践应用。值得注意的是,由于阴极还原反应常常消耗水中的质子并导致局部高碱性环境,SSE可应用于从不同气源(如烟道气)中捕获酸性CO2以形成碳酸根离子。在电场的驱动下,形成的CO32-可以通过阴离子交换膜,并被阳极半反应产生的质子所酸化,实现高浓度CO2的再生,进而被收集作为下游CO2电还原的低成本原料。基于这一原理,近年来已有多种SSE构型的反应器被报道用于高效捕获不同气源的CO2。通过两个SSE单元的协同作用,已经实现了串联电化学CO2捕获和电催化转化。最后,我们对SSE在未来面向碳中和领域的应用中提出了展望,并建议更多关注以下具体方面的优化:SSE层的基本物理化学性质、电化学工程视角下离子和物种通量及选择性,以及连续CO2捕获和转化单元之间的系统性匹配。这些努力旨在进一步推动固态电解质反应器在更广泛的电化学领域中的应用示范。
介孔碳载体可通过纳米孔限域Pt沉积缓解磺酸根中毒问题,但其形态特征对氧传输的影响机制尚不明确。本研究结合碳载体形态模拟与改进的催化层团聚体模型,构建了阐明催化层孔结构演化、Pt利用率及氧传输过程的数学模型。结果表明,局部传质阻力主要由三个因素主导:(1)决定氧通量的活性位点密度;(2)决定最短传输路径的离聚物膜厚度;(3)影响实际路径长度的离聚物-Pt表面积比。在低离聚物/碳比例(I/C比)条件下,活性位点不足导致局域传输阻力显著增加(因素1主导);而高I/C比虽提升离聚物覆盖率,但膜厚增大会削弱传质(因素2-3主导)。大尺寸碳颗粒因降低外比表面积并增加离聚物厚度,导致局域传质阻力净升高。随着纳米孔内Pt占比或Pt质量分数增加,孔内Pt密度升高加剧孔道堵塞,导致活性位点减少并增加离聚物厚度及表面积,进一步增大传质阻力。同样地,Pt载量降低导致活性位点减少,氧传输阻力线性增加。本研究强调需协同优化载体形态、Pt分布及离聚物含量,在平衡催化活性与传质效率的同时抑制孔道堵塞,研究结果可以为高性能介孔碳催化剂设计提供系统化理论指导。
金属-有机框架(MOF)纳米材料因其独特性质显著促进了电化学传感器的发展。合理设计双金属MOF并集成与微电极对于提高电化学性能至关重要,但仍然面临巨大挑战。本工作中通过原位电沉积方法将双金属FeCo-MOF纳米材料组装于金超微电极(Au UME,直径约为5.2 µm)表面,并应用于肾上腺素(EP)的电化学检测。FeCo-MOF呈现类纳米花结构,均匀分散在超微电极基底上。FeCo-MOF/Au UME在EP检测中表现出较好的电化学性能,具有高灵敏度36.93 μA·μmol-1·L·cm-2和低检测限1.28 μmol·L-1。这可归因于EP在超微电极基底的非线性快速传质特点,以及基于MOF结构中Fe、Co双金属的协同催化效应。此外,我们将FeCo-MOF/Au UME成功应用于人血清样本中EP的检测,且表现出较高回收率。本研究工作不仅有助于扩展电化学传感器研究领域,还将为设计开发基于MOF纳米敏感材料的微纳电化学传感器件提供指导和借鉴。
开发高效、稳定的氧还原反应电催化剂对于质子交换膜燃料电池的大规模应用具有重要的促进作用。合金化是目前广泛采用的Pt基催化剂优化策略之一,然而,传统Pt基无序合金催化剂活性目前依然无法满足燃料电池设备的要求。此外,过渡金属容易在酸性体系中发生腐蚀溶解,造成催化剂活性的迅速衰减,从而导致设备的整体稳定性较差。相比之下,金属间化合物因其原子有序排列可以提供独特的电子效应、几何效应及更强的金属间相互作用,实现催化活性与稳定性双重提升的目标。本文报道了一种L10型Pt2NiCo三元有序金属间化合物纳米催化剂(o-Pt2NiCo),相较于Pt2NiCo无序合金和Pt/C,其催化活性与稳定性均有显著增加。通过进一步改变退火条件对Pt2NiCo的有序度进行调控,并探究了ORR性能与有序度之间的关系。实验结果表明,当退火温度为800 °C,退火时间为2 h时,Pt2NiCo有序度达到最高值35.9%,且有序度与催化活性呈正相关。对于电催化ORR反应,o-Pt2NiCo在0.9 V电位下的质量活性能够达到0.44·mgPt−1,分别是无序Pt2NiCo合金(d-Pt2NiCo)和Pt/C的1.8倍与2.8倍。同时,o-Pt2NiCo的催化稳定性也得到了大幅度提升,在30000圈电位循环后质量活性保持率依然能够达到70.8%,远超d-Pt2NiCo和Pt/C。
使用陶瓷电解质的全固态锂离子电池(LIBs)被认为是理想的可充电电池形式,因为它们具有高能量密度和安全性。然而,在追求全固态LIBs的过程中,锂资源层面的问题往往被选择性的忽视了。最具实用化潜力的富锂陶瓷电解质会使得全固态LIBs的锂消耗量是常规LIBs的数倍至数十倍。考虑到以当前的锂资源条件很难支撑全固态锂离子电池的可持续发展,另一种同样能够提供高能量密度和安全性双重优势的系统——全固态钠离子电池(SIBs),相比于锂离子电池具有更显著的可持续性优势,并有可能成为下一代高能量密度电池发展竞赛中的有力竞争者。然而,目前关于全固态钠离子电池的研究依然处于十分初步的阶段,本文简要介绍了全固态SIBs的研究现状,并通过对聚合物类材料,钠超离子导体(NASICON)类材料等固态钠离子导体的总结讨论,解释了全固态SIBs的可行性与潜在优势的来源。此外,本文还简要讨论了通过人工智能辅助开发固态钠离子导体的可行性,旨在激发研究人员的兴趣并吸引更多人关注到全固态SIBs这一领域中。
能源需求的持续增长和环境污染的加剧构成了亟待解决的主要挑战。开发和利用风能和太阳能等可再生、可持续的清洁能源至关重要。然而,这些间歇性能源的不稳定性使得对储能系统的需求日益迫切。水系锌离子电池(AZIBs)因其独特优势,如高能量密度、成本效益、环保性和安全性,受到广泛关注。然而,AZIBs面临着重大挑战,主要是锌枝晶的形成严重影响了电池的稳定性和寿命,导致电池失效。因此,减少锌枝晶的形成对于提高 AZIBs 的性能至关重要。本综述系统而全面地梳理了当前抑制锌枝晶形成的策略和进展。通过综合分析锌阳极、电解质、隔膜设计和改性以及其他新机制的最新发展,为研究人员提供一个透彻的理解,以指导未来的研究,推动水性锌离子电池技术的发展。
诱导经典强金属-载体相互作用(SMSI)是一种提高负载型金属催化剂性能的有效途径,这指的是载体包覆金属纳米颗粒的结构重构效应。传统的SMSI诱导方式是热还原方法,但这过程中往往伴随着会损害催化活性的金属纳米颗粒的长大过程。为了解决这一问题,本研究开发了一种温和的电化学方法来诱导SMSI,并在核壳结构CNT@SnO2载体上负载的Pt纳米颗粒催化剂中进行了验证。高分辨透射电镜(HRTEM)和电化学测试结果证实了电化学诱导方法成功在Pt纳米颗粒表面构建了SnOx包覆层。这种SnOx包覆层可以保护Pt纳米颗粒在氢氧化反应(HOR)中不受CO杂质的毒害。实验显示,当H2中混入10000 ppm浓度的CO时,E-Pt-CNT@SnO2的HOR电流密度经过2000 s后仍能保持85%,而商用Pt/C在相同条件条件下工作300 s则完全失活。此外,SnOx包覆层与Pt纳米颗粒之间存在电子相互作用,这导致电荷从载体迁移到Pt纳米颗粒上,并在远离界面处聚集。这种电荷转移降低了Pt对H中间体的吸附能,提高了E-Pt-CNT@SnO2的HOR活性,催化剂的交换电流密度为1.55 A·mgPt-1,是商业Pt/C的1.3倍。原位拉曼光谱和理论计算结果表明,电化学诱导SMSI的关键因素是Pt纳米颗粒对Sn-O键强度的减弱。此外,Pt纳米颗粒对载体不同区域的Sn-O键强度的弱化存在差异,其中表面Sn原子与内部O原子之间的键强度弱于Sn原子与表面O原子之间的键强度,这促进了SnOx团簇的形成和迁移。
碱性水电解制氢是现今最为成熟的水电解制氢技术。电解槽由多个电解小室组成,单个电解小室由隔膜、电极、双极板和端板等组成。现有工业的双极板流道结构为凹凸结构,通过模具冲压成型制备,制备成本高且困难。凹凸结构电解小室存在电解液流动不均匀和电流密度低的问题,进而增加了碱性水电解制氢的能耗和成本。因而,本文首先根据现有工业的凹凸双极板流道结构搭建电化学和流动模型,分析电解小室电流密度、电解液流动和气泡分布情况。模型可靠性已通过与文献实验数据对照验证。其中,电化学电流密度决定了气体产率,气体在电解液中流动反过来影响电化学反应活性比表面积和欧姆电阻。结果表明,凹凸结构电解小室凹球底部流动速度几近为零,凸球表面电解液流速较大,流道结构中存在旋涡,电解液分布不均。接着,建模优化碱性水电解槽的流道结构,比较了凹凸结构、网状、菱形和膨胀网结构电解小室电化学和流动性能。结果表明,膨胀网结构电解小室电流密度最大,为3330 A/m2,电解液流速最大,为0.507 m/s。相同电流密度下,过电位最小,能耗最低。本文对碱性水电解槽流道结构的全面理解和优化提供一定的指导意义,为大规模电解槽设计提供理论基础。
石墨氮化碳(g-C3N4)因其出色的机械和热学特性而成为一种有价值的材料,可应用于光电转换器件、有机化合物合成的加速器、燃料电池应用或电源的电解质,以及储氢物质和荧光检测器等领域。g-C3N4可以采用不同的方法制备,且可得到多种形态和纳米结构,如为不同用途而设计的零到三维材料。近年来关于g-C3N4的报道很多,但缺乏涵盖纳米结构尺寸及其性质的全面综述。本文旨在对g-C3N4的光催化和电催化用途提供基本和全面的了解。通过涵盖合成方法、尺寸、形貌、应用和性能,重点介绍了g-C3N4纳米结构设计的最新进展。除了总结之外,我们还将讨论挑战和前景。从事g-C3N4纳米结构相关研究及各种应用的科学家、研究人员和工程师可能会发现我们的综述论文是有用的资源。
本综述探讨了电化学原位偏振调制红外反射吸收光谱在电极表面薄膜结构、取向和构象研究中的应用。该技术基于红外光谱表面选律,利用p偏振光在金属表面的增强和s偏振光的衰减特性,通过两者的差谱消除溶剂背景吸收,从而获取单一电极电位下表面物种的红外吸收信息。相比之下,另外两种流行的原位红外光谱技术,差减归一化界面傅立叶变换红外光谱和表面增强红外吸收光谱,需要进行电位差谱以消除本体溶液的信号。本文首先简要介绍了偏振调制红外反射吸收光谱的操作流程及消除背景吸收的方法,随后通过三个实例展示了该技术在仿生生物膜研究中的应用:束缚磷脂双层膜、大肠杆菌素在磷脂双层中的结构分析,以及金电极表面核脂单层膜的研究。最后,以氧化石墨烯在电化学还原过程中的结构变化为例,阐述了偏振调制红外反射吸收光谱在材料科学中的广阔应用前景。