[1] |
Siavash M R, Hosseini-Hosseinabad S M, Masudy-Panah S, Seza A, Jalali M, Fallah-Arani H, Dabir F, Gholipour S, Abdi Y, Bagheri-Hariri M, Riahi-Noori N, Lim Y F, Hagfeldt A, Saliba M. Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: A review[J]. Adv. Mater., 2021, 33(33): 2007285.
|
[2] |
Pastor E, Le Formal F, Mayer M T, Tilley S D, Francàs L, Mesa C A, Grätzel M, Durrant J R. Spectroelectrochemical analysis of the mechanism of (photo) electrochemical hydrogen evolution at a catalytic interface[J]. Nat. Commun., 2017, 8(1): 14280.
|
[3] |
Chiang C Y, Shin Y, Ehrman S. Li doped CuO film electrodes for photoelectrochemical cells[J]. J. Electrochem. Soc., 2011, 159(2): B227-B231.
|
[4] |
Bagtache R, Saib F, Abdmeziem K, Trari M. A new hetero-junction p-CuO/Al2O3 for the H2 evolution under visible light[J]. Int. J. Hydrogen Energy, 2019, 44(39): 22419-22424.
|
[5] |
Peter L M, Walker A B, Bein T, Hufnagel A G, Kondofersky I. Interpretation of photocurrent transients at semiconductor electrodes: Effects of band-edge unpinning[J]. J. Electroanal. Chem., 2020, 872: 114234.
|
[6] |
Masudy-Panah S, Siavash Moakhar R, Chua C S, Tan H R, Wong T I, Chi D, Dalapati G K. Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting[J]. ACS Appl. Mater. Interfaces, 2016, 8(2): 1206-1213.
|
[7] |
Artioli G A, Mancini A, Barbieri V R, Quattrini M C, Quartarone E, Mozzati M C, Drera G, Sangaletti L, Gombac V, Fornasiero P, Malavasi L. Correlation between deposition parameters and hydrogen production in CuO nanostructured thin films[J]. Langmuir, 2016, 32(6): 1510-1520.
doi: 10.1021/acs.langmuir.5b03917
pmid: 26788810
|
[8] |
John S, Roy S C. CuO/Cu2O nanoflake/nanowire heterostructure photocathode with enhanced surface area for photoelectrochemical solar energy conversion[J]. Appl. Surf. Sci., 2020, 509: 144703.
|
[9] |
Masudy-Panah S, Eugene Y J K, Khiavi N D, Katal R, Gong X. Aluminum-incorporated P-CuO/N-ZnO photocathode coated with nanocrystal-engineered TiO2 protective layer for photoelectrochemical water splitting and hydrogen generation[J]. J. Mater. Chem. A, 2018, 6(25): 11951-11965.
|
[10] |
Kushwaha A, Moakhar R S, Goh G K L, Dalapati G K. Morphologically tailored CuO photocathode using aqueous solution technique for enhanced visible light driven water splitting[J]. J. Photochem. Photobiol., A., 2017, 337: 54-61.
|
[11] |
Moehl T, Suh J, Sévery L, Wick-Joliat R, Tilley S D. Investigation of (leaky) Ald TiO2 protection layers for water-splitting photoelectrodes[J]. ACS Appl. Mater. Interfaces, 2017, 9(50): 43614-43622.
|
[12] |
Bard A J, Bocarsly A B, Fan F R F, Walton E G, Wrighton M S. The concept of fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices[J]. J. Am. Chem. Soc., 1980, 102(11): 3671-3677.
|
[13] |
Upul Wijayantha K G, Saremi-Yarahmadi S, Peter L M. Kinetics of oxygen evolution at alpha-Fe2O3 photoanodes: a study by photoelectrochemical impedance spectroscopy[J]. Phys. Chem. Chem. Phys., 2011, 13(12): 5264-5270.
doi: 10.1039/c0cp02408b
pmid: 21229167
|
[14] |
Zhang S F, Gao B Y, Leng W H. Kinetic difference in water photooxidation between TiO2 and WO3 electrodes by rate law Analysis[J]. ACS Appl. Energy Mater., 2023, 6(3): 1973-1981.
|
[15] |
Zhang S F, Leng W H, Liu K. Unconventional rate law of water photooxidation at TiO2 electrodes[J]. Phys. Chem. Chem. Phys., 2023, 25(18): 12891-12899.
|
[16] |
Zhang S F, Leng W H. Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes[J]. Nat. Chem., 2020, 12: 1097-1098.
doi: 10.1038/s41557-020-00569-y
pmid: 33168962
|
[17] |
Nong H N, Falling L J, Bergmann A, Klingenhof M, Tran H P, Spöri C, Mom R, Timoshenko J, Zichittella G, Knop-Gericke A, Piccinin S, Pérez-Ramírez J, Cuenya B R, Schlögl R, Strasser P, Teschner D, Jones T E. Key role of chemistry versus bias in electrocatalytic oxygen evolution[J]. Nature, 2020, 587(7834): 408-413.
|
[18] |
Lim Y F, Chua C S, Lee C J J, Chi D. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting[J]. Phys. Chem. Chem. Phys., 2014, 16(47): 25928-25934.
|
[19] |
Hinczewski D S, Hinczewski M, Tepehan F Z, Tepehan G G. Optical filters from SiO2 and TiO2 multi-layers using sol-gel spin coating method[J]. Sol. Energy Mater. Sol. Cells, 2005, 87(1): 181-196.
|
[20] |
Shangguan P P, Tong S H, Li H L, Leng W H. Enhanced photoelectrochemical oxidation of water over undoped and Ti-doped α-Fe2O3 electrodes by electrochemical reduction pretreatment[J]. RSC Adv., 2013, 10163: 10163-10167.
|
[21] |
Francas L, Corby S, Selim S, Lee D, Mesa C A, Godin R, Pastor E, Stephens I E L, Choi K S, Durrant J R. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts[J]. Nat. Commun., 2019, 10(1): 5208.
|
[22] |
Mesa C A, Francas L, Yang K R, Garrido-Barros P, Pastor E, Ma Y, Kafizas A, Rosser T E, Mayer M T, Reisner E, Gratzel M, Batista V S, Durrant J R. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT[J]. Nat. Chem., 2020, 12(1): 82-89.
doi: 10.1038/s41557-019-0347-1
pmid: 31636394
|
[23] |
Righi G, Plescher J, Schmidt F P, Campen R K, Fabris S, Knop-Gericke A, Schlögl R, Jones T E, Teschner D, Piccinin S. On the origin of multihole oxygen evolution in haematite photoanodes[J]. Nat. Catal., 2022, 5(10): 888-899.
|
[24] |
Zhang S F, Leng W H. Quantitative determination the role of the intrabandgap states in water photooxidation over hematite electrodes[J]. J. Phys. Chem. Lett., 2023, 14(41): 9316-9323.
doi: 10.1021/acs.jpclett.3c02461
pmid: 37818854
|
[25] |
Leng W H, Zhang Z, Zhang J Q, Cao C N. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy[J]. J. Phys. Chem. B, 2005, 109(31): 15008-15023.
|
[26] |
Peter L M. Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite[J]. J. Solid State Electrochem., 2012, 17(2): 315-326.
|
[27] |
Cheng X F, Leng W H, Liu D P, Xu Y M, Zhang J Q, Cao C N. Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochemical and photocatalytic properties[J]. J. Phys. Chem. C, 2008, 112(23): 8725-8734.
|
[28] |
Shangguan P P, Tong S P, Li H L, Leng W H. Influence of the potential on the charge-transfer rate constant of photooxidation of water over α-Fe2O3 and Ti-doped α-Fe2O3[J]. Acta Phys.-Chim. Sin., 2013, 29(9): 1954-1960.
|