[1] |
Khaselev O, Turner J A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting[J]. Science, 1998, 280(5362): 425-427.
pmid: 9545218
|
[2] |
Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat. Mater., 2009, 8(1): 76-80.
doi: 10.1038/nmat2317
pmid: 18997776
|
[3] |
Liang Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat. Mater., 2011, 10(10): 780-786.
|
[4] |
Cheng Y, Xu C, Jia L, Gale J D, Zhang L, Liu C, Shen P K. Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting[J]. Appl. Catal. B-Environ., 2015, 163: 96-104.
|
[5] |
Rees N V, Compton R G. Carbon-free energy: A review of ammonia-and hydrazine-based electrochemical fuel cells[J]. Energy Environ. Sci., 2011, 4(4): 1255-1260.
|
[6] |
Meng Y Y, Zou X X, Huang X X, Goswami A, Liu Z W, Asefa T. Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation[J]. Adv. Mater., 2014, 26(37): 6510-6516.
|
[7] |
Van Der Linde P, Peñas-López P, Soto Á M, Van Der Meer D, Lohse D, Gardeniers H, Rivas D F. Gas bubble evolution on microstructured silicon substrates[J]. Energy Environ. Sci., 2018, 11(12): 3452-3462.
|
[8] |
Zhao X, Ren H, Luo L. Gas bubbles in electrochemical gas evolution reactions[J]. Langmuir, 2019, 35(16): 5392-5408.
doi: 10.1021/acs.langmuir.9b00119
pmid: 30888828
|
[9] |
Angulo A, van der Linde P, Gardeniers H, Modestino M, Rivas D F. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579.
|
[10] |
Graziano G. Forever blowing nanobubbles[J]. Nat. Rev. Chem., 2020, 4(10): 506-506.
|
[11] |
Liu Y L, Jin C, Liu Y W, Chen Q J. Recent progress in gas nanobubble electrochemistry[J]. Sci. China Chem., 2021, 51(3): 310-322.
|
[12] |
Luo L, White H S. Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes[J]. Langmuir, 2013, 29(35): 11169-11175.
doi: 10.1021/la402496z
pmid: 23957440
|
[13] |
Chen Q, Luo L, Faraji H, Feldberg S W, White H S. Electrochemical measurements of single H2 nanobubble nucleation and stability at Pt nanoelectrodes[J]. J. Phys. Chem. Lett., 2014, 5(20): 3539-3544.
|
[14] |
Chen Q, Luo L, White H S. Electrochemical generation of a hydrogen bubble at a recessed platinum nanopore electrode[J]. Langmuir, 2015, 31(15): 4573-4581.
doi: 10.1021/acs.langmuir.5b00234
pmid: 25811080
|
[15] |
Chen Q, Wiedenroth H S, German S R, White H S. Electrochemical nucleation of stable N2 nanobubbles at Pt nanoelectrodes[J]. J. Am. Chem. Soc., 2015, 137(37): 12064-12069.
|
[16] |
German S R, Edwards M A, Chen Q, Liu Y, Luo L, White H S. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions[J]. Faraday Discuss., 2016, 193: 223-240.
pmid: 27722703
|
[17] |
Ren H, German S R, Edwards M A, Chen Q, White H S. Electrochemical generation of individual O2 nanobubbles via H2O2 oxidation[J]. J. Phys. Chem. Lett., 2017, 8(11): 2450-2454.
|
[18] |
Ren H, Edwards M A, Wang Y, White H S. Electrochemically controlled nucleation of single CO2 nanobubbles via formate oxidation at Pt nanoelectrodes[J]. J. Phys. Chem. Lett., 2020, 11(4): 1291-1296.
|
[19] |
Qiu X, Wei H F, Li R J, Li Y X. Electrochemical and electrocatalytic performance of single Au@Pt/Au bimetallic nanoparticles[J]. J. Alloy. Compd., 2023, 956: 170365.
|
[20] |
Chen W, Wang H, Tang H R, Yang C, Li Y X. Unique voltammetry of silver nanoparticles: From single particle to aggregates[J]. Anal. Chem., 2019, 91(22): 14188-14191.
doi: 10.1021/acs.analchem.9b03372
pmid: 31638365
|
[21] |
Duan X H, Li N, Wang G N, Su X G. High sensitive ratiometric fluorescence analysis of trypsin and dithiothreitol based on WS2 QDs[J]. Talanta, 2020, 219: 121171.
|
[22] |
Guo X R, Wang Y, Wu F Y, Ni Y N, Kokot S. The use of tungsten disulfide dots as highly selective, fluorescent probes for analysis of nitrofurazone[J]. Talanta, 2015, 144: 1036-1043.
doi: 10.1016/j.talanta.2015.07.055
pmid: 26452924
|
[23] |
Pakiari A, Jamshidi Z. Nature and strength of M- S Bonds (M= Au, Ag, and Cu) in binary alloy gold clusters[J]. J. Phys. Chem. A, 2010, 114(34): 9212-9221.
doi: 10.1021/jp100423b
pmid: 20687518
|
[24] |
Hua H M, Liu Y, Wang D M, Li Y X. Size-dependent voltammetry at single silver nanoelectrodes[J]. Anal. Chem., 2018, 90(16): 9677-9681.
doi: 10.1021/acs.analchem.8b02644
pmid: 30073830
|
[25] |
Li Y X, Wu Q Q, Jiao S F, Xu C D, Wang L. Single Pt nanowire electrode: preparation, electrochemistry, and electrocatalysis[J]. Anal. Chem., 2013, 85(8): 4135-4140.
doi: 10.1021/ac400331w
pmid: 23505964
|
[26] |
Watkins J J, Chen J, White H S, Abruna H D, Maisonhaute E, Amatore C. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions[J]. Anal. Chem., 2003, 75(16): 3962-3971.
pmid: 14632106
|
[27] |
Cheng Z L, Ma L, Liu Z. Hydrothermal-assisted grinding route for WS2 quantum dots (QDs) from nanosheets with preferable tribological performance[J]. Chin. Chem. Lett., 2021, 32(1): 583-586.
|
[28] |
Yan Z L, Fu L J, Yang H M, Ouyang J. Amino-functionalized hierarchical porous SiO2-AlOOH composite nanosheets with enhanced adsorption performance[J]. J. Hazard. Mater., 2018, 344: 1090-1100.
|
[29] |
Bayat A, Saievar-Iranizad E. Synthesis of blue photoluminescent WS2 quantum dots via ultrasonic cavitation[J]. J. Lumines., 2017, 185: 236-240.
|
[30] |
Yan Y H, Zhang C L, Gu W, Ding C P, Li X C, Xian Y Z. Facile synthesis of water-soluble WS2quantum dots for turn-on fluorescent measurement of lipoic acid[J]. J. Phys. Chem. C, 2016, 120(22): 12170-12177.
|
[31] |
Lin L X, Xu Y X, Zhang S W, Ross I M, Ong A C M, Allwood D A. Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling[J]. ACS nano, 2013, 7(9): 8214-8223.
doi: 10.1021/nn403682r
pmid: 23968363
|
[32] |
Xu S S, Gao X M, Hu M, Sun J Y, Wang D S, Zhou F, Weng L J, Liu W M. Morphology evolution of Ag alloyed WS2 films and the significantly enhanced mechanical and tribological properties[J]. Surf. Coat. Technol., 2014, 238: 197-206.
|
[33] |
Wang Y, Liu Y, Zhang J F, Wu J J, Xu H, Wen X W, Zhang X, Tiwary C S, Yang W, Vajtai R, Zhang Y, Chopra N, Odeh I N, Wu Y C, Ajayan P M. Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots[J]. Sci. Adv., 2017, 3(12): e1701500.
|
[34] |
Shi F Y, Du J R, Han Q, Zhang F R, Wang K, Kan Z T, Wang L, Li C Y, Xu L. Integrated wearable foam modified with WS2nanosheets@MoS2 quantum dots for oral disease diagnosis and healthcare monitoring[J]. Chem. Eng. J., 2023, 477: 146800.
|
[35] |
Edwards M A, White H S, Ren H. Voltammetric determination of the stochastic formation rate and geometry of individual H2, N2, and O2 bubble nuclei[J]. ACS Nano, 2019, 13(6): 6330-6340.
doi: 10.1021/acsnano.9b01015
pmid: 30901516
|
[36] |
Chen Q, Ranaweera R, Luo L. Hydrogen bubble formation at hydrogen-insertion electrodes[J]. J. Phys. Chem. C, 2018, 122(27): 15421-15426.
|
[37] |
Chen Q J, Luo L. Correlation between gas bubble formation and hydrogen evolution reaction kinetics at nanoelectrodes[J]. Langmuir, 2018, 34(15): 4554-4559.
doi: 10.1021/acs.langmuir.8b00435
pmid: 29569923
|
[38] |
Wei H F, Wang H, Tang H R, Li Y X. Voltammetric analysis of single nanobubble formation on Ag and Ag@MoS2 nanoelectrodes[J]. J. Phys. Chem. C, 2021, 125(5): 3073-3080.
|
[39] |
Sheng W, Gasteiger H A, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes[J]. J. Electrochem. Soc., 2010, 157(11): B1529.
|
[40] |
Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger H A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism[J]. Energy Environ. Sci., 2014, 7(7): 2255-2260.
|
[41] |
Shinagawa T, Garcia-Esparza A T, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Sci Rep, 2015, 5(1): 13801.
|
[42] |
Hill C M, Kim J, Bard A J. Electrochemistry at a metal nanoparticle on a Tunneling film: A steady-state model of current densities at a tunneling ultramicroelectrode[J]. J. Am. Chem. Soc., 2015, 137(35): 11321-11326.
doi: 10.1021/jacs.5b04519
pmid: 26280667
|
[43] |
Defnet P A, Han C, Zhang B. Temporally-resolved ultrafast hydrogen adsorption and evolution on single platinum nanoparticles[J]. Anal. Chem., 2019, 91(6): 4023-4030.
doi: 10.1021/acs.analchem.8b05463
pmid: 30785269
|
[44] |
Mariano R G, McKelvey K, White H S, Kanan M W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations[J]. Science, 2017, 358(6367): 1187-1192.
|
[45] |
Liu C M, Lin H W, Huang Y S, Chu Y C, Chen C, Lyu D R, Chen K N, Tu K N. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu[J]. Sci Rep, 2015, 5(1): 9734.
|
[46] |
Aaronson B D B, Chen C H, Li H, Koper M T M, Lai S C S, Unwin P R. Pseudo-single-crystal electrochemistry on polycrystalline electrodes: Visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction[J]. J. Am. Chem. Soc., 2013, 135(10): 3873-3880.
doi: 10.1021/ja310632k
pmid: 23405963
|
[47] |
Chen C H, Meadows K E, Cuharuc A, Lai S C S, Unwin P R. High resolution mapping of oxygen reduction reaction kinetics at polycrystalline platinum electrodes[J]. Phys. Chem. Chem. Phys., 2014, 16(34): 18545-18552.
|