欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文)

• 研究论文 •    

基于Au@MoS2的多巴胺电化学传感研究

安宁a,苏妮b*,李欣然a,刘建宇a,王其炎a*   

  1. a. 郑州大学,力学与安全工程学院,河南省郑州市 450001;b. 郑州大学,化学学院,河南省郑州市 450001
  • 出版日期:2024-10-24 发布日期:2024-10-24
  • 通讯作者: 苏妮 E-mail:wangqiyan_3@163.com;judy_sue@qq.com
  • 作者简介:安宁,苏妮,李欣然,刘建宇,王其炎

Study on Dopamine Electrochemical Sensing Based on Au@MoS2

Ning Ana, Ni Sub*, Xinran Lia, Jianyu Liua, Qiyan Wanga*   

  1. a School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, China. b School of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
  • Published:2024-10-24 Online:2024-10-24
  • Contact: Ni Su E-mail:wangqiyan_3@163.com;judy_sue@qq.com
  • About author:Ning An, Ni Su, Xinran Li, Jianyu Liu, Qiyan Wang

摘要: 巴胺(Dopamine,DA)是一种重要的神经递质,其准确检测对临床诊断和神经科学研究至关重要。由于多巴胺具有电化学活性,常通过电化学方法进行检测,电化学方法因其操作简便、响应迅速、适用于在体分析而备受关注。本文本研究采用HAuCl4还原的方法在二硫化钼纳米片上修饰金纳米颗粒制备了Au@MoS2复合材料,旨在构建一种高灵敏度的多巴胺电化学传感器,以增强DA吸附,从而提升检测多巴胺的性能。SEM、TEM、EDS、XPS、XRD证实了Au@MoS2的成功合成,并且金纳米颗粒均匀分布在MoS2纳米片表面。电化学表征结果表明,Au@MoS2/GCE在10 μM DA溶液中表现出明显的氧化峰,且电化学活性显著优于未修饰的GCE和纯MoS2。DPV结果表明,Au@MoS2/GCE在800 nM至10 μM范围内对DA呈现良好的线性关系,检出限(LOD)低至78.9 nM(S/N=3),并且对其他共存干扰物质具有优良的选择性。此外,在Au@MoS2表面进行激光诱导产生带有表面带有大量负电荷缺陷的LIAu@MoS2,,实现了对低浓度DA的超灵敏检测。此外,激光诱导的Au@MoS2(LIAu@MoS2)由于表面富含大量带负电荷的缺陷,能够实现对低浓度DA的超灵敏检测。综上所述,本文成功制备了Au@MoS2复合材料,并构建高灵敏度的多巴胺电化学传感器。该传感器具有成本低廉、操作简单和易于量产的特点,显著提升了对DA的传感性能,在生物传感领域具有潜在的应用前景。

关键词: 多巴胺, 电化学传感, 二硫化钼, 金纳米颗粒

Abstract: Dopamine (DA) is a vital neurotransmitter, and accurate detection of its concentration is critical for both clinical diagnostics and neuroscience research. Due to its electrochemical activity, DA is commonly detected using electrochemical methods, which are favored for their simplicity, fast response times, and suitability for in vivo analysis. In this work, a highly sensitive dopamine electrochemical sensor was developed using an Au@MoS2 composite, created by modifying molybdenum disulfide (MoS2) nanosheets with gold nanoparticles through HAuCl4 reduction, and it was aimed at enhancing DA adsorption and improving detection performance. Scanning Electron Microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive Spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray Diffraction (XRD) confirmed the successful synthesis of Au@MoS2 and the uniform distribution of gold nanoparticles across the MoS2 nanosheets. Then, the electrochemical characterization demonstrated that the Au@MoS2/GCE exhibited distinct oxidation peaks in a 10 μM DA solution, with significantly enhanced electrochemical activity compared to both unmodified GCE and pristine MoS2. Furthermore, differential pulse voltammetry (DPV) further revealed a strong linear relationship between DA concentration and the current response in the range of 800 nM to 10 μM, with a low detection limit (LOD) of 78.9 nM (S/N=3). Additionally, the sensor showed excellent selectivity against other interfering substances. Moreover, laser-induced Au@MoS2 (LIAu@MoS2), with its abundance of negatively charged surface defects, enabled the ultra-sensitive detection of the ultra-low concentrations of DA. In conclusion, the successfully fabricated Au@MoS2 based sensor offers advantages such as low cost, ease of operation, and scalability, making it a promising candidate for biosensing applications due to its enhanced dopamine detection capabilities.

Key words: Dopamine, Electrochemical sensor, Molybdenum disulfide, Gold nanoparticles