电化学(中英文) ›› 2025, Vol. 31 ›› Issue (3): 2407241. doi: 10.61558/2993-074X.3503
安宁a, 苏妮b,*(), 李欣然a, 刘建宇a, 王其炎a,*(
)
收稿日期:
2024-07-24
修回日期:
2024-09-28
接受日期:
2025-10-01
出版日期:
2025-03-28
发布日期:
2024-10-24
Ning Ana, Ni Sub,*(), Xin-Ran Lia, Jian-Yu Liua, Qi-Yan Wanga,*(
)
Received:
2024-07-24
Revised:
2024-09-28
Accepted:
2025-10-01
Published:
2025-03-28
Online:
2024-10-24
Contact:
*E-mail: wangqiyan_3@163.com;E-mail: judy_sue@qq.com
摘要:
多巴胺(Dopamine,DA)是一种重要的神经递质,其准确检测对临床诊断和神经科学研究至关重要。由于多巴胺具有电化学活性,常通过电化学方法进行检测,电化学方法因其操作简便、响应迅速、适用于在体分析而备受关注。本文本研究采用HAuCl4还原的方法在二硫化钼纳米片上修饰金纳米颗粒制备了Au@MoS2复合材料,旨在构建一种高灵敏度的多巴胺电化学传感器,以增强DA吸附,从而提升检测多巴胺的性能。SEM、TEM、EDS、XPS、XRD证实了Au@MoS2的成功合成,并且金纳米颗粒均匀分布在MoS2纳米片表面。电化学表征结果表明,Au@MoS2/GCE在10 μmol·L-1 DA溶液中表现出明显的氧化峰,且电化学活性显著优于未修饰的GCE和纯MoS2。DPV结果表明,Au@MoS2/GCE在800 nmol·L-1至10 μmol·L-1范围内对DA呈现良好的线性关系,检出限(LOD)低至78.9 nmol·L-1(S/N=3),并且对其他共存干扰物质具有优良的选择性。此外,在Au@MoS2表面进行激光诱导产生带有表面带有大量负电荷缺陷的LIAu@MoS2,,实现了对低浓度DA的超灵敏检测。此外,激光诱导的Au@MoS2(LIAu@MoS2)由于表面富含大量带负电荷的缺陷,能够实现对低浓度DA的超灵敏检测。综上所述,本文成功制备了Au@MoS2复合材料,并构建高灵敏度的多巴胺电化学传感器。该传感器具有成本低廉、操作简单和易于量产的特点,显著提升了对DA的传感性能,在生物传感领域具有潜在的应用前景。
安宁, 苏妮, 李欣然, 刘建宇, 王其炎. 基于Au@MoS2的多巴胺电化学传感研究[J]. 电化学(中英文), 2025, 31(3): 2407241.
Ning An, Ni Su, Xin-Ran Li, Jian-Yu Liu, Qi-Yan Wang. Study on Dopamine Electrochemical Sensing Based on Au@MoS2[J]. Journal of Electrochemistry, 2025, 31(3): 2407241.
[1] | Franco R, Reyes-Resina I, Navarro G. Dopamine in Health and Disease: Much More Than a Neurotransmitter[J]. Biomedicines, 2021, 9(2): 109-122. |
[2] |
Broome S T, Louangaphay K, Keay K A, Leggio G M, Musumeci G, Castorina A. Dopamine: An Immune Transmitter[J]. Neural Regen. Res., 2020, 15(12): 2173-2185.
doi: 10.4103/1673-5374.284976 pmid: 32594028 |
[3] | Lakard S, Pavel I A, Lakard B. Electrochemical biosensing of dopamine neurotransmitter: A review[J]. Biosensors-Basel, 2021, 11(6): 179-202. |
[4] | Battal D, Aktas Süküroglu A, Alkas F B, Ünlüsayin I. A rapid, precise, and sensitive Lc-Ms/Ms method for the quantitative determination of urinary dopamine levels a simple liquid-liquid extraction technique[J]. Turk. J. Pharm. Sci., 2021, 18(6): 761-769. |
[5] | Ezquer-Garin C, Aguilar G, Ferriols-Lisart R, Alos-Almiñana M. Validated HPLC-UV method for amphotericin B quantification in a critical patient receiving AmBisome and treated with extracorporeal replacement therapies[J]. Biomed. Chromatogr., 2023, 37(12): e5749-e5759. |
[6] |
Tiwari A, Walia S, Sharma S, Chauhan S, Kumar M, Gadly T, Randhawa J K. High quantum yield carbon dots and nitrogen-doped carbon dots as fluorescent probes for spectroscopic dopamine detection in human serum[J]. J. Mater. Chem. B, 2023, 11(5): 1029-1043.
doi: 10.1039/d2tb02188a pmid: 36597935 |
[7] | Hsine Z, Mlika R, Jaffrezic-Renault N, Korri-Youssoufi H. Review-recent progress in graphene based modified electrodes for electrochemical detection of dopamine[J]. Chemosensors, 2022, 10(7): 249-271. |
[8] | Tian Y M, Wu W N, Zhao X L, Wang Y, Fan Y C, Xu Z H. Dual Fluorescence and electrochemical detection of carbon monoxide based on a ferrocene-chalcone platform[J]. Sensor Actuat. B-Chem., 2024, 419(15): 136440-136450. |
[9] | Nawz T, Safdar A, Hussain M, Lee D S, Siyar M. Graphene to advanced MoS2: A review of structure, synthesis, and optoelectronic device application[J]. Crystals, 2020, 10(10): 902-933. |
[10] |
Subramanian S, Campbell Q T, Moser S K, Kiemle J, Zimmermann P, Seifert P, Sigger F, Sharma D, Al-Sadeg H, Labella M, Waters D, Feenstra R M, Koch R J, Jozwiak C, Bostwick A, Rotenberg E, Dabo I, Holleitner A W, Beechem T E, Wurstbauer U, Robinson J A. Photophysics and electronic structure of lateral graphene/MoS2 and metal/MoS2 junctions[J]. ACS Nano, 2020, 14(12): 16663-16671.
doi: 10.1021/acsnano.0c02527 pmid: 33196167 |
[11] | Ying H T, Li X, Wang H M, Wang Y R, Hu X, Zhang J, Zhang X F, Shi Y Q, Xu M X, Zhang Q. Band structure engineering in MoS2 based heterostructures toward high-performance phototransistors[J]. Adv. Opt. Mater., 2020, 8(13): 2000430-2000438. |
[12] | Zhang Y C, Zhang R J, Guo Y X, Li Y M, Li K S. A review on MoS2 structure, preparation, energy storage applications and challenges[J]. J. Alloy. Compd., 2024, 998(5): 174916-174933. |
[13] | Bo Z, Cheng X N, Yang H C, Guo X Z, Yan J H, Cen K F, Han Z J, Dai L M. Ultrathick MoS2 Films with exceptionally high volumetric capacitance[J]. Adv. Energy Mater., 2022, 12(11): 2103394-2103403. |
[14] | Liao M Z, Wei Z, Du L J, Wang Q Q, Tang J, Yu H, Wu F F, Zhao J J, Xu X Z, Han B, Liu K H, Gao P, Polcar T, Sun Z P, Shi D X, Yang R, Zhang G Y. Precise control of the interlayer twist angle in large scale MoS2 homostructures[J]. Nat. Commun., 2020, 11(1): 2153-2161. |
[15] | Park S G, Rajesh P P, Hwang M H, Chu K H, Cho S, Chae K J. Long-term effects of anti-biofouling proton exchange membrane using silver nanoparticles and polydopamine on the performance of microbial electrolysis cells[J]. Int. J. Hydrogen. Energ., 2021, 46(20): 11345-11356. |
[16] | Samy O, Zeng S W, Birowosuto M D, El Moutaouakil A. A review on MoS2 properties, synthesis, sensing applications and challenges[J]. Crystals, 2021, 11(4): 355-379. |
[17] | Zhang H B, Yu L, Chen T, Zhou W, Lou X W. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution[J]. Adv Funct. Mater., 2018, 28(51): 1807086-1807094. |
[18] | Huang M T, Tian H M, Zhou P L, Ma S S, Chen J M, Zhang N, Zhang K Y. Electrochemical sensor for detection of ascorbic acid based on MoS2-AuNPs modified glassy carbon electrode[J]. Int. J. Electrochem. Sci., 2021, 16(1): 151014-151022. |
[19] | Li Q L, Li P, Li Y K, Sidike S, Xu Y L, Wang Y C, Hu Z, Guo M M, Zhang H Q, Zhang Y C. Flexible molybdenum disulfide/carbon nanotube composite films for thermoelectric applications[J]. Energy Mater. Adv., 2024, 5(24): 0114-0121. |
[20] | Mphuthi N, Sikhwivhilu L, Ray SS. Functionalization of 2d MoS2 nanosheets with various metal and metal oxide nanostructures: Their properties and application in electrochemical sensors[J]. Biosensors-Basel, 2022, 12(6): 386-431. |
[21] | Pavlicková M, Lorencová L, Hatala M, Kovác M, Tkác J, Gemeiner P. Facile fabrication of screen-printed MoS2 electrodes for electrochemical sensing of dopamine[J]. Sci. Rep., 2022, 12(1): 11900-11911. |
[22] | Wang Q W, Wang M, Zhang N, Huang X, Wang X H, Wang S T. A novel electrochemical sensor based on MoS2 electrospun nanofibers and polyoxometalate composite for the simultaneous detection of ractopamine and clenbuterol[J]. Microchem. J., 2023, 189: 108434. |
[23] | Xin Y Y, Liu L H, Liu Y, Deng Z P, Cheng X L, Zhang X F, Xu Y M, Li-Hua H, Gao S. Nanoflower MoS2/rGO composite rich in edge defects for enhanced electrochemical sensing of nM-level dopamine[J]. Microchem. J., 2024, 197: 109878. |
[24] |
Geng H Y, Pedersen S V, Ma Y, Haghighi T, Dai H L, Howes P D, Stevens M M. Noble metal nanoparticle biosensors: From fundamental studies toward point-of-care diagnostics[J]. Accounts Chem. Res., 2022, 55(5): 593-604.
doi: 10.1021/acs.accounts.1c00598 pmid: 35138817 |
[25] |
Jin S L, Zhang D X, Yang B, Guo S, Chen L, Jung Y M. Noble metal-free SERS: Mechanisms and applications[J]. Analyst, 2023, 149(1): 11-28.
doi: 10.1039/d3an01669b pmid: 38051259 |
[26] | Putri L A, Prabowo Y D, Dewi DM M, Mumtazah Z, Adila F P, Fadillah G, Amrillah T, Triyana K, Nugroho F A A, Wasisto H S. Review of noble metal nanoparticle-based colorimetric sensors for food safety monitoring[J]. ACS Appl. Nano Mater., 2024, 7(17): 19821-19853. |
[27] | Xu Q, Jia H Y, Duan X M, Lu L M, Tian Q Y, Chen S X, Xu J K, Jiang F X. Label-free electrochemical immunosensor for the detection of prostate specific antigen based three-dimensional Au nanoparticles/MoS2-graphene aerogels composite[J]. Inorg. Chem. Commun., 2020, 119: 108122. |
[28] | Yang S Z, Liu Q A, Liu Y L, Weng G J, Zhu J, Li J J. Recent progress in the optical detection of pathogenic bacteria based on noble metal nanoparticles[J]. Microchim. Acta., 2021, 188(8): 1-23. |
[29] | Sun X J, Chen C, Xiong C, Zhang C M, Zheng X S, Wang J, Gao X P, Yu Z Q, Wu Y E. Surface modification of MoS2 nanosheets by single Ni atom for ultrasensitive dopamine detection[J]. Nano Res., 2023, 16(1): 917-924. |
[30] | Lu K D, Liu J M, Dai X Y, Zhao L, Yang Y F, Li H, Jiang Y Y. Construction of a Au@MoS2 composite nanosheet biosensor for the ultrasensitive detection of a neurotransmitter and understanding of its mechanism based on DFT calculations[J]. RSC Adv., 2021, 12(2): 798-809. |
[31] | Zhao Z H, Qin F, Kasiraju S, Xie L X, Alam M K, Chen S, Wang D Z, Ren Z F, Wang Z M, Grabow L C, Bao J M. Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution[J]. ACS Catal., 2017, 7(10): 7312-7318. |
[32] | Liu P F, Yang S, Zheng L R, Zhang B, Yang H G. Mo6+ activated multimetal oxygen-evolving catalysts[J]. Chem. Sci., 2017, 8(5): 3484-3488. |
[33] | Li L, Qin Z D, Ries L, Hong S, Michel T, Yang J, Salameh C, Bechelany M, Miele P, Kaplan D, Chhowalla M, Voiry D. Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen[J]. ACS Nano, 2019, 13(6): 6824-6834. |
[34] | Sylvestre J P, Poulin S, Kabashin A V, Sacher E, Meunier M, Luong J H T. Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media[J]. J. Phys. Chem. B, 2004, 108(43): 16864-16869. |
[35] |
Wang X, Zhang Y W, Si H N, Zhang Q H, Wu J, Gao L, Wei X F, Sun Y, Liao Q L, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2[J]. J. Am. Chem. Soc., 2020, 142(9): 4298-4308.
doi: 10.1021/jacs.9b12113 pmid: 31999446 |
[36] | Zhu X F, He M, Xiao L, Liu H Z, Hu M C, Li S N, Zhai Q G, Chen Y, Jiang Y C. Enzymatic biosensor for nitrite detection based on direct electron transfer by CPO-ILEMB/Au@MoS2/GC[J]. J. Appl. Electrochem., 2022, 52(6): 979-987. |
[37] | Su N, Wang K B, Li X R, Huo X K, Chai G B, Fan W, Shi Q Z, Lv M Y, Zhang S S, Xie J P, Wei R H, Zhang Q D, Wang Q Y. Laser-induced stripping defect for highly selective electrochemical quantification of dopamine: Anti-interference from other catecholamine neurotransmitters[J]. Talanta, 2024, 279: 126638. |
[38] | Luo N, Chen C, Yang D M, Hu W Y, Dong F Q. S Defect-rich ultrathin 2d MoS2: The role of S point-defects and S stripping-defects in the removal of Cr(VI) via synergistic adsorption and photocatalysis[J]. Appl. Catal. B-Environ., 2021, 299: 120664. |
[39] |
Atta N F, El-Kady M F. Poly(3-Methylthiophene)/palladium sub-micro-modified sensor electrode. Part II: Voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen[J]. Talanta, 2009, 79(3): 639-647.
doi: 10.1016/j.talanta.2009.04.040 pmid: 19576424 |
[40] | Thompson I, Campbell D. Interpreting nyquist responses from defective coatings on steel substrates[J]. Corros. Sci., 1994, 36(1): 187-198. |
[41] | Cadiz F, Robert C, Wang G, Kong W, Fan X, Blei M, Lagarde D, Gay M, Manca M, Taniguchi T, Watanabe K, Amand T, Marie X, Renucci P, Tongay S, Urbaszek B. Ultra-low power threshold for laser induced changes in optical properties of 2d molybdenum dichalcogenides[J]. 2D Mater, 2016, 3(4): 045008. |
[42] |
Bakker E, Pretsch E, Bühlmann P. Selectivity of potentiometric ion sensors[J]. Anal. Chem., 2000, 72(6): 1127-1133.
pmid: 10740849 |
[1] | Gustria Ernis, Yulia M T A Putri, Muhammad Iqbal Syauqi, Prastika Krisma Jiwanti, Yeni Wahyuni Hartati, Takeshi Kondo, Qonita Kurnia Anjani, Jarnuzi Gunlazuardi. 非酶电化学传感器检测茶碱的最新进展[J]. 电化学(中英文), 2025, 31(3): 2411291-. |
[2] | 李家俊, 张伟彬, 刘鑫宇, 杨静蕾, 尹易, 杨泽钦, 马雪婧. 二硫化钼和碳纳米管复合物电极用于盐差能转换[J]. 电化学(中英文), 2024, 30(6): 2307121-. |
[3] | 罗大娟, 刘冰倩, 覃蒙颜, 高荣, 苏丽霞, 苏永欢. 基于Au/rGO/FeOOH的新型电化学传感器一步检测亚硝酸盐[J]. 电化学(中英文), 2022, 28(8): 2110191-. |
[4] | 徐聪, 江迎, 于萍, 毛兰群. 脑神经电化学研究[J]. 电化学(中英文), 2022, 28(3): 2108551-. |
[5] | Tesfaye Hailemariam Barkae, Mohamed Ibrahim Halawa, Tadesse Haile Fereja, Shimeles Addisu Kitte, 马显贵, 陈业权, 徐国宝. 鲁米诺/氨基磺酸电化学发光及其多巴胺检测应用[J]. 电化学(中英文), 2021, 27(2): 168-176. |
[6] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[7] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[8] | 王来玉, 奚馨, 吴东清, 刘雄宇, 纪伟, 刘瑞丽. 有序介孔碳/石墨烯/镍泡沫的制备及其对多巴胺的高灵敏度和高选择性检测[J]. 电化学(中英文), 2020, 26(3): 347-358. |
[9] | 关利浩, 王 超, 张 望, 蔡雨露, 李 凯, 林雨青. 快捷两步法制备金纳米电极用于活体多巴胺检测[J]. 电化学(中英文), 2019, 25(2): 244-251. |
[10] | 周 奇, 张立敏, 田 阳. 非电活性分子的活体电化学分析进展[J]. 电化学(中英文), 2019, 25(2): 160-171. |
[11] | 戴琬琳, 鲁志伟, 叶建山. 二次刻蚀聚酰亚胺负载CuxO纳米复合物薄膜电极用于葡萄糖的快速测定[J]. 电化学(中英文), 2019, 25(2): 260-269. |
[12] | 张雅琳,陈驰,邹亮亮,邹志青,杨辉. Fe-N共掺杂的碳纳米管串联空心球对氧还原反应的电催化[J]. 电化学(中英文), 2018, 24(6): 726-732. |
[13] | 董鹏飞, 李娜, 赵海燕, 崔敏, 张聪, 任聚杰, 藉雪平. Keggin 型磷钨酸盐修饰碳糊电极传感多巴胺的研究[J]. 电化学(中英文), 2018, 24(5): 555-562. |
[14] | 王慧娟. 超薄Co3O4纳米片薄膜制备及其电化学传感器性能[J]. 电化学(中英文), 2016, 22(6): 631-635. |
[15] | 姚 瑞, 宋玉江, 李焕巧, 李 佳, 刘建国. 担载型纳米金的制备参数优化及电催化性能探索[J]. 电化学(中英文), 2016, 22(2): 147-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||