电化学(中英文) ›› 2024, Vol. 30 ›› Issue (9): 2403081. doi: 10.61558/2993-074X.3460
• 论文 • 上一篇
高梦婷,#, 卫莹,#, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强*()
收稿日期:
2024-03-08
修回日期:
2024-04-09
接受日期:
2024-04-23
出版日期:
2024-09-28
发布日期:
2024-04-23
Meng-Ting Gao,#, Ying Wei,#, Xue-Meng Hu, Wenj-Jie Zhu, Qing-Qing Liu, Jin-Yuan Qiang, Wan-Wan Liu, Ying Wang, Xu Li, Jian-Feng Huang, Yong-Qiang Feng*()
Received:
2024-03-08
Revised:
2024-04-09
Accepted:
2024-04-23
Published:
2024-09-28
Online:
2024-04-23
Contact:
* Yong-Qiang Feng, E-mail: fengyq@sust.edu.cnAbout author:
# These authors contribute equally to this work
摘要:
碱性电解水析氢反应作为获取绿色氢能源的重要途径具有广泛的研究意义和应用价值,但其缓慢的电极反应动力学及较高的过电位需要高效稳定的催化剂来加速反应过程。目前商用的铂(Pt)基催化剂因高昂的成本限制了其规模化应用。设计高效、低过电位的非 Pt 电催化剂仍然是一个重大挑战。钌(Ru)基催化剂因具有类 Pt 的活性氢结合能而受到广泛关注。本文以富勒醇和三聚氰胺为基体原料,与氯化钴和氯化钌在 150 °C 水热反应 24 小时,随后在氩气/氢气(5%)混合气氛下 600 °C热解处理,成功在氮掺杂碳纳米管(N-CNTs)上修饰了钴钌(CoRu)纳米合金,制备了一种新型高效的 Co,Ru 双金属电催化剂。得益于 Co 和 Ru 位点之间的电子通信,所得 CoRu@N-CNTs 具有优异的电催化析氢反应活性。在 1 mol·L -1 氢氧化钾水溶液中达到 10 mA·cm -2 的电流密度,所需过电位仅为 19 mV,塔菲尔斜率为 26.19 mV·dec-1,优于基准 Pt/C 催化剂。本研究将为高效析氢电催化剂的设计与制造开辟一条新的道路,有力推动电解水制氢技术在能源存储与转化领域的应用推广,为我国“碳达峰与碳中和”战略目标的实施蓄势赋能。
高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081.
Meng-Ting Gao, Ying Wei, Xue-Meng Hu, Wenj-Jie Zhu, Qing-Qing Liu, Jin-Yuan Qiang, Wan-Wan Liu, Ying Wang, Xu Li, Jian-Feng Huang, Yong-Qiang Feng. Electronic Communication between Co and Ru Sites Decorated on Nitrogen-Doped Carbon Nanotubes Boosting the Alkaline Hydrogen Evolution Reaction[J]. Journal of Electrochemistry, 2024, 30(9): 2403081.
[1] | Qiao M F, Wang Y, Wang Q, Hu G Z, Mamat X, Zhang S S, Wang S Y. Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells[J]. Angew. Chem. Int. Ed., 2020, 59(7): 2688-2694. |
[2] | Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Adv. Mater., 2016, 28(2): 215-230. |
[3] |
Hodges A, Hoang A L, Tsekouras G, Wagner K, Lee C Y, Swiegers G F, Wallace G G. A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen[J]. Nat. Commun., 2022, 13(1): 1304.
doi: 10.1038/s41467-022-28953-x pmid: 35292657 |
[4] |
Chu C H, Huang D H, Gupta S, Weon S, Niu J F, Stavitski E, Muhich C, Kim J H. Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis[J]. Nat. Commun., 2021, 12(1): 5179.
doi: 10.1038/s41467-021-25526-2 pmid: 34462434 |
[5] | Kang J X, Qiu X Y, Hu Q, Zhong J, Gao X, Huang R, Wan C Z, Liu L M, Duan X F, Guo L. Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation[J]. Nat. Catal., 2021, 4(12): 1050-1058. |
[6] | Gao T T, Li X Q, Chen X J, Zhou C X, Yue Q, Yuan H Y, Xiao D. Ultra-fast preparing carbon nanotube-supported trimetallic Ni, Ru, Fe heterostructures as robust bifunctional electrocatalysts for overall water splitting[J]. Chem. Eng. J., 2021, 424: 130416. |
[7] | Wang T J, Jiang Y C, He J W, Li F M, Ding Y, Chen P, Chen Y. Porous palladium phosphide nanotubes for formic acid electrooxidation[J]. Carbon Energy, 2022, 4(3): 283-293. |
[8] | Jiang W J, Tang T, Zhang Y, Hu J S. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting[J]. Acc. Chem. Res., 2020, 53(6): 1111-1123. |
[9] | Huang C, Ouyang T, Zou Y, Li N, Liu Z Q. Ultrathin NiCo2Px nanosheets strongly coupled with CNTs as efficient and robust electrocatalysts for overall water splitting[J]. J. Mater. Chem. A, 2018, 6(17): 7420-7427. |
[10] | Olabi A G, Abdelkareem M A. Renewable energy and climate change[J]. Renew. Sus. Energ. Rev., 2022, 158: 112111. |
[11] | Wang X N, Zhao L M, Li X J, Liu Y, Wang Y S, Yao Q F, Xie J P, Xue Q Z, Yan Z F, Yuan X, Xing W. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation[J]. Nat. Commun., 2022, 13(1): 1596. |
[12] |
Zaman S, Huang L, Douka A I, Yang H, You B, Xia B Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives[J]. Angew. Chem. Int. Ed., 2021, 60(33): 17832-17852.
doi: 10.1002/anie.202016977 pmid: 33533165 |
[13] | Chen H, Zhang B, Liang X, Zou X X. Light alloying element-regulated noble metal catalysts for energy-related applications[J]. Chinese J. Catal., 2022, 43(3): 611-635. |
[14] |
Sun Y M, Xue Z Q, Liu Q L, Jia Y L, Li Y L, Liu K, Lin Y Y, Liu M, Li G Q, Su C Y. Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution[J]. Nat. Commun., 2021, 12(1): 1369.
doi: 10.1038/s41467-021-21595-5 pmid: 33649349 |
[15] | Clay C, Haq S, Hodgson A. Intact and dissociative adsorption of water on Ru(0001)[J]. Chem. Phys. Lett., 2004, 388(1): 89-93. |
[16] | Cao X J, Huo J J, Li L, Qu J P, Zhao Y F, Chen W H, Liu C T, Liu H, Wang G X. Recent advances in engineered Ru-based electrocatalysts for the hydrogen/oxygen conversion reactions[J]. Adv. Energy Mater., 2022, 12(41): 2202119. |
[17] | Liu Z, Zeng L L, Yu J Y, Yang L J, Zhang J, Zhang X L, Han F, Zhao L L, Li X, Liu H, Zhou W J. Charge redistribution of Ru nanoclusters on Co3O4 porous nanowire via the oxygen regulation for enhanced hydrogen evolution reaction[J]. Nano Energy, 2021, 85: 105940. |
[18] |
Wang Y J, Luo W J, Li H J, Cheng C A W. Ultrafine Ru nanoclusters supported on N/S doped macroporous carbon spheres for efficient hydrogen evolution reaction[J]. Nanoscale Adv., 2021, 3(17): 5068-5074.
doi: 10.1039/d1na00424g pmid: 36132347 |
[19] | Wu Y L, Li X, Wei Y S, Fu Z, Wei W, Wu X T, Zhu Q L, Xu Q. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction[J]. Adv. Mater., 2021, 33(12): 2006965. |
[20] | Zhang X L, Ma J, Yan R W, Cheng W X, Zheng J, Jin B K. Pt-Ru/polyaniline/carbon nanotube composites with three-layer tubular structure for efficient methanol oxidation[J]. J. Alloy. Compd, 2021, 867: 159017. |
[21] |
Zhai P L, Xia M Y, Wu Y Z, Zhang G H, Gao J F, Zhang B, Cao S Y, Zhang Y T, Li Z W, Fan Z Z, Wang C, Zhang X M, Miller J T, Sun L C, Hou J G. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting[J]. Nat. Commun., 2021, 12(1): 4587.
doi: 10.1038/s41467-021-24828-9 pmid: 34321467 |
[22] | Han X, Li Y J, Wang X, Dong J T, Li H M, Yin S, Xia J X. Ru anchored on Co(OH)2 nanowire arrays as highly effective electrocatalyst for full water splitting[J]. Int. J. Hydrogen Energ., 2024, 51: 769-776. |
[23] | Liu Z, Yang X D, Hu G Z, Feng L G. Ru nanoclusters coupled on Co/N-doped carbon nanotubes efficiently catalyzed the hydrogen evolution reaction[J]. ACS Sustain. Chem. Eng., 2020, 8(24): 9136-9144. |
[24] | Shah K, Dai R Y, Mateen M, Hassan Z, Zhuang Z W, Liu C H, Israr M, Cheong W C, Hu B T, Tu R Y, Zhang C, Chen X, Peng Q, Chen C, Li Y D. Cobalt single atom incorporated in ruthenium oxide sphere: A robust bifunctional electrocatalyst for HER and OER[J]. Angew. Chem. Int. Ed., 2022, 61(4): e202114951. |
[25] | Martínez-Séptimo A, Valenzuela M A, Del Angel P, González-Huerta G R. Irruox/TiO2 a stable electrocatalyst for the oxygen evolution reaction in acidic media[J]. Int. J. Hydrogen Energ., 2021, 46(51): 25918-25928. |
[26] | Li G K, Jang H, Liu S G, Li Z J, Kim M G, Qin Q, Liu X, Cho J. The synergistic Effect of Hf-O-Ru Bonds and oxygen vacancies in Ru/HfO2 for enhanced hydrogen evolution[J]. Nat. Commun., 2022, 13(1): 1270. |
[27] | Feng W H, Feng Y Q, Chen J S, Wang H, Hu Y Z, Luo T M, Yuan C K, Cao L Y, Feng L L, Huang J F. Interfacial electronic engineering of Ru/FeRu nanoparticles as efficient trifunctional electrocatalyst for overall water splitting and Zn-Air battery[J]. Chem. Eng. J., 2022, 437: 135456. |
[28] | Lin S Y, Chen Y P, Cao Y, Zhang L, Feng J J, Wang A J. Aminouracil-assisted synthesis of CoFe decorated bougainvillea-like N-doped carbon nanoflowers for boosting Zn-Air battery and water electrolysis[J]. J. Power Sources, 2022, 521: 230926. |
[29] |
Song H Q, Wu M, Tang Z Y, Tse J S, Yang B, Lu S Y. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production[J]. Angew. Chem. Int. Ed., 2021, 60(13): 7234-7244.
doi: 10.1002/anie.202017102 pmid: 33438321 |
[30] |
Kumar A, Bui V Q, Lee J, Wang L, Jadhav A R, Liu X, Shao X, Liu Y, Yu J, Hwang Y, Bui H T D, Ajmal S, Kim M G, Kim S G, Park G S, Kawazoe Y, Lee H. Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution[J]. Nat. Commun., 2021, 12(1): 6766.
doi: 10.1038/s41467-021-27145-3 pmid: 34799571 |
[31] |
Lu Z Y, Wang B F, Hu Y F, Liu W, Zhao Y F, Yang R O, Li Z P, Luo J, Chi B, Jiang Z, Li M S, Mu S C, Liao S J, Zhang J J, Sun X L. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction[J]. Angew. Chem. Int. Ed., 2019, 58(9): 2622-2626.
doi: 10.1002/anie.201810175 pmid: 30600864 |
[32] | Bai L, Hsu C S, Alexander D T L, Chen H M, Hu X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis[J]. Nat. Energy, 2021, 6(11): 1054-1066. |
[33] | Liu D B, Zhao Y, Wu C Q, Xu W J, Xi S B, Chen M X, Yang L, Zhou Y Z, He Q, Li X Y, Ge B H, Song L, Jiang J, Yan Q Y. Triggering electronic coupling between neighboring hetero-diatomic metal sites promotes hydrogen evolution reaction kinetics[J]. Nano Energy, 2022, 98: 107296. |
[34] | Li J Z, Hou C Z, Chen C, Ma W S, Li Q, Hu L W, Lv X W, Dang J. Collaborative interface optimization strategy guided ultrafine RuCo and Mxene heterostructure electrocatalysts for efficient overall water splitting[J]. ACS Nano, 2023, 17(11): 10947-10957. |
[35] | Su K Y, Yang S, Yang A Z, Guo Y, Liu B, Zhu J W, Tang Y W, Qiu X Y. Customizing the anisotropic electronic states of Janus-distributive FeN4 and NiN4 dual-atom sites for reversible oxygen electrocatalysis[J]. Appl. Catal. B-Environ., 2023, 331: 122694. |
[36] | Luo T M, Huang J F, Hu Y Z, Yuan C K, Chen J S, Cao L Y, Kajiyoshi K, Liu Y J, Zhao Y, Li Z J, Feng Y Q. Fullerene lattice-confined Ru nanoparticles and single atoms synergistically boost electrocatalytic hydrogen evolution reaction[J]. Adv. Funct. Mater., 2023, 33(12): 2213058. |
[37] | Wei C, Rao R R, Peng J, Huang B, Stephens I E L, Risch M, Xu Z J, Shao-Horn Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells[J]. Adv. Mater., 2019, 31(31): 1806296. |
[38] | Chen J, Huang J, Wang R, Feng W, Wang H, Luo T, Hu Y, Yuan C, Feng L, Cao L, Kajiyoshi K, He C, Liu Y, Li Z, Feng Y. Atomic ruthenium coordinated with chlorine and nitrogen as efficient and multifunctional electrocatalyst for overall water splitting and rechargeable zinc-air battery[J]. Chem. Eng. J., 2022, 441: 136078. |
[39] | Feng Y Q, Li X, Liu Q Q, Zhu W J, Huo X M, Gao M T, Liu W W, Wang Y, Wei Y. Fullerene-derived nanocomposite as an efficient electrocatalyst for overall water splitting and Zn-air battery[J]. Mater. Chem. Front., 2023, 7(24): 6446-6462. |
[40] | Chen J S, Huang J F, Zhao Y, Cao L Y, Kajiyoshi K, Liu Y J, Li Z J, Feng Y Q. Enhancing the electronic metal-support interaction of CoRu alloy and pyridinic N for electrocatalytic pH-universal hydrogen evolution reaction[J]. Chem. Eng. J., 2022, 450: 138026. |
[41] | Duan S S, Han G S, Su Y H, Zhang X Y, Liu Y Y, Wu X L, Li B J. Magnetic Co@G-C3N4 core-shells on rGO sheets for momentum transfer with catalytic activity toward continuous-flow hydrogen generation[J]. Langmuir, 2016, 32(25): 6272-6281. |
[42] | Zhang F F, Zhu Y L, Chen Y, Lu Y Z H, Lin Q, Zhang L, Tao S W, Zhang X W, Wang H T. RuCo alloy bimodal nanoparticles embedded in N-doped carbon: a superior pH-universal electrocatalyst outperforms benchmark Pt for the hydrogen evolution reaction[J]. J. Mater. Chem. A, 2020, 8(25): 12810-12820. |
[43] | Zhang M L, Wang J L, Zhang Y Q, Ye L, Gong Y Q. Ultrafine CoRu alloy nanoparticles in situ embedded in Co4N Porous nanosheets as high-efficient hydrogen evolution electrocatalysts[J]. Dalton Trans., 2021, 50(8): 2973-2980. |
[44] |
Chen J, Ha Y, Wang R R, Liu Y X, Xu H B, Shang B, Wu R B, Pan H G. Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis[J]. Nano-Micro Lett., 2022, 14(1): 186.
doi: 10.1007/s40820-022-00933-2 pmid: 36104459 |
[45] | Cao D, Wang J Y, Xu H X, Cheng D J. Construction of dual-site atomically dispersed electrocatalysts with Ru-C5 single atoms and Ru-O4 nanoclusters for accelerated alkali hydrogen evolution[J]. Small, 2021, 17(31): 2101163. |
[46] | Tiwari J N, Harzandi A M, Ha M, Sultan S, Myung C W, Park H J, Kim D Y, Thangavel P, Singh A N, Sharma P, Chandrasekaran S S, Salehnia F, Jang J W, Shin H S, Lee Z, Kim K S. High-performance hydrogen evolution by Ru single atoms and nitrided-Ru nanoparticles implanted on N-Doped graphitic sheet[J]. Adv. Energy Mater., 2019, 9(26): 1900931. |
[47] |
Zhao D, Sun K A, Cheong W C, Zheng L R, Zhang C, Liu S J, Cao X, Wu K L, Pan Y, Zhuang Z W, Hu B T, Wang D S, Peng Q, Chen C, Li Y D. Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution[J]. Angew. Chem. Int. Ed., 2020, 59(23): 8982-8990.
doi: 10.1002/anie.201908760 pmid: 31515887 |
[48] | Yu W H, Huang H, Qin Y N, Zhang D, Zhang Y Y, Liu K, Zhang Y, Lai J P, Wang L. The synergistic effect of pyrrolic-N and pyridinic-N with Pt under strong metal-support interaction to achieve high-performance alkaline hydrogen evolution[J]. Adv. Energy Mater., 2022, 12(21): 2200110. |
[49] | Chen Y W, Ding R, Li J, Liu J G. Highly active atomically dispersed platinum-based electrocatalyst for hydrogen evolution reaction achieved by defect anchoring strategy[J]. Appl. Catal. B-Environ., 2022, 301: 120830. |
[50] | Su P P, Pei W, Wang X W, Ma Y F, Jiang Q K, Liang J, Zhou S, Zhao J J, Liu J, Lu G Q. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate[J]. Angew. Chem. Int. Ed., 2021, 60(29): 16044-16050. |
[1] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[2] | 李家俊, 张伟彬, 刘鑫宇, 杨静蕾, 尹易, 杨泽钦, 马雪婧. 二硫化钼和碳纳米管复合物电极用于盐差能转换[J]. 电化学(中英文), 2024, 30(6): 2307121-. |
[3] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[4] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[5] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[6] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[7] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[8] | 梁宵, 张可新, 沈雨澄, 孙轲, 石磊, 陈辉, 郑克岩, 邹晓新. 钙钛矿型水氧化电催化剂[J]. 电化学(中英文), 2022, 28(9): 2214004-. |
[9] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[10] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[11] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
[12] | 万紫轩, 王超辉, 康雄武. 泡沫铜支撑Ru掺杂Cu3P自支撑催化剂及其析氢性能[J]. 电化学(中英文), 2022, 28(10): 2214005-. |
[13] | 魏家祺, 陈晓东, 李述周. 电化学合成纳米材料和小分子材料在电解制氢领域的应用[J]. 电化学(中英文), 2022, 28(10): 2214012-. |
[14] | 徐黎黎, 任冬燕, 赵骁锋, 易勇. 高导电性和催化活性的Janus-TiNbCO2析氢反应催化材料[J]. 电化学(中英文), 2021, 27(5): 570-578. |
[15] | 唐佳, 张晓明, 于陕升, 王素力, 孙公权. PtxCuy/C电催化剂甲醇氧化反应性能及机理研究[J]. 电化学(中英文), 2021, 27(5): 508-517. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||