电化学(中英文) ›› 2024, Vol. 30 ›› Issue (9): 2402061. doi: 10.61558/2993-074X.3468
收稿日期:
2024-02-06
修回日期:
2024-04-04
接受日期:
2024-05-05
出版日期:
2024-09-28
发布日期:
2024-05-09
Received:
2024-02-06
Revised:
2024-04-04
Accepted:
2024-05-05
Published:
2024-09-28
Online:
2024-05-09
Contact:
* Pei-Chao Li, wiselee18@163.com摘要:
本文基于电化学-热-力(ETM)耦合模型,对快速充电下锂离子电池(LIB)的老化特性进行了数值研究。首先,通过COMSOL Multiphysics建立并求解了ETM耦合模型。随后,对电池进行了长循环测试,以探索LIB的老化特性。具体而言,从SEI的非均匀分布、SEI生长、热稳定性和应力特性等方面分析了充放电倍率和循环次数的增加对电池老化的影响。结果表明,充放电倍率和循环的增加导致SEI不均匀程度的增加,以及因SEI生成所造成的电池容量损失也随之增加。同时充放电倍率和循环数的增加也分别导致电池的发热量增加和散热率降低,从而使得电极材料热稳定性下降。此外,随着循环的进行,正极材料的von Mises应力高于负极材料,正极材料表现为拉伸变形,负极材料表现为压缩变形,正极的有效锂离子浓度低于负极的有效锂离子浓度,证明了电池正极材料在长循环下所发生的拉伸型断裂主导了容量损失过程。上述研究有助于研究人员进一步探索锂离子电池在快速充电条件下的老化行为,并采取相应的预防措施。
左东旭, 李培超. 基于电化学-热-力耦合模型的快速充电下锂离子电池的老化特性分析[J]. 电化学(中英文), 2024, 30(9): 2402061.
Dong-Xu Zuo, Pei-Chao Li. Aging Characteristics of Lithium-Ion Battery under Fast Charging Based on Electrochemical-Thermal-Mechanical Coupling Model[J]. Journal of Electrochemistry, 2024, 30(9): 2402061.
Parameter | Unit | Negative electrode | Separator | Positive electrode |
---|---|---|---|---|
Thickness | 70 | 20 | 60 | |
Mean particle radius | 10 | 4 | ||
Solid phase fraction | 0.59 | 0.61 | ||
Liquid phase fraction | 0.3 | 0.45 | 0.3 | |
Maximum Li+ concentration | 31370 | 51385 | ||
Initial Li+ concentration | 25086 | 20544 | ||
Initial Li+ concentration | 1000 | |||
Initial state of charge | 0.8 | 0.4 | ||
Anodic charge-transfer coefficient | 0.5 | 0.5 | ||
Cathodic charge-transfer coefficient | 0.5 | 0.5 | ||
Reaction rate constant | ||||
Universal gas constant | 8.314 | 8.314 | 8.314 | |
Faraday’s constant | 96485 | 96485 | 96485 | |
Transport number | 0.38 | |||
Reaction rate constant for SEI formation KSEI | ||||
Battery material density | kg·m-3 | 1555 | 1017 | 2895 |
Specific heat capacity | J·kg-1·K-1 | 1437 | 1978 | 1270 |
Thermal conductivity | W·m-1·K-1 | 1.04 | 0.34 | 1.58 |
Reference temperature | K | 298 | 298 | 298 |
Young’s modulus | 12 | 0.25 | 10 | |
Poisson’s ratio | 0.3 | 0.35 | 0.3 | |
Coefficient of thermal expansion |
[1] | Dong H M, Liu Y S, Zhao Z H, Tan X J, Managi S. Carbon neutrality commitment for China: From vision to action[J]. Sustain. Sci., 2022, 17: 1741-1755. |
[2] | Feng J C, Yan J Y, Yu Z, Zeng X L, Xu W J. Case study of an industrial park toward zero carbon emission[J]. Appl. Energy, 2018, 209: 65-78. |
[3] | Zubi L G., DufoLópez R., Carvalho M., Pasaoglu G. The lithium-ion cell: state of the art and future perspectives[J]. Renew. Sust. Energ. Rev., 2018, 89: 292-308. |
[4] | Lisbona D, Snee T. A review of hazards associated with primary lithium and lithium-ion batteries[J]. Environ. Prot., 2011, 6(89): 434-442. |
[5] | Zhang G X, Wei X Z, Han G S, Dai H F, Zhu J G, Wang X Y, Tang X, Ye J P. Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling[J]. J. Power Sources, 2011, 484: 229312. |
[6] |
You H Z, Zhu J G, Wang X Y, Jiang B, Sun H, Liu X H, Wei X Z, Han G S, Ding S C, Yu H Q, Li W H, Sauer D U, Dai H F. Nonlinear health evaluation for lithium-ion battery within full-lifespan[J]. J. Energy Chem., 2022, 72: 333-341.
doi: 10.1016/j.jechem.2022.04.013 |
[7] |
Nam G W, Park N Y, Park K J, Yang J, Liu J, Yoon C S, Sun Y K. Capacity fading of Ni-Rich NCA Cathodes: Effect of microcracking extent[J]. ACS Energy Lett., 2019, 4: 2995-3001.
doi: 10.1021/acsenergylett.9b02302 |
[8] | Noh H J, Youn S, Yoon C S, Sun C S. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. J. Power Sources, 2013, 233: 121-130. |
[9] | Fleischhammer M, Waldmann T, Bisle G, Hogg B I, Wohlfahrt-Mehrens M. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. J. Power Sources, 2015, 274: 432-439. |
[10] | Ren D S, Hsu H J, Li R H, Feng X N, Guo D X, Han X B, Lu L G, He X M, Gao S, Hou J X, Li Y, Wang Y L, Ouyang M G. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2: 100034. |
[11] | Liu T C, Liu J J, Li L X, Yu L, Diao J C, Zhou T, Li S N, Dai A, Zhao W G, Xu S Y, Ren Y, Wang L G, Wu T P, Qi R, Xiao Y G, Zheng J X, Cha W, Harder R, Robinson I, Wen J G, Lu J, Pan F, Amine K. Origin of structural degradation in Li-rich layered oxide cathode[J]. Nature, 2022, 606: 305-312. |
[12] | Sabet P S, Warnecke A J, Meier F, Witzenhausen H, Laserna E M, Sauer D U. Non-invasive yet separate investigation of anode/cathode degradation of lithium-ion batteries (nickel-cobalt-manganese vs. graphite) due to accelerated aging[J]. J. Power Sources, 2020, 449: 227369. |
[13] | Yang S C, Hua Y, Qiao D, Lian Y B, Pan Y W, He Y L. A coupled electrochemical-thermal-mechanical degradation modelling approach for lifetime assessment of lithium-ion batteries[J]. Electrochim. Acta, 2019, 326: 134928. |
[14] | Wang Z, Wang J. An experimental investigation of the degradation and combustion behaviors associated with lithium ion batteries after different aging treatments[J]. J. Clean. Prod., 2020, 272: 122708. |
[15] | Abada S, Petit M, Lecocq A, Marlair G, Moynot V S, Huet F. Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries[J]. J. Power Sources, 2018, 399, 264-273. |
[16] | Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion Cell[J]. J. Electrochem. Soc., 1993, 140: 1526. |
[17] | Doyle M, Newman J. The use of mathematical modeling in the design of lithium/polymer battery systems[J]. Electrochim. Acta, 1995, 13-14(40): 2191-2196. |
[18] | Ren H L, Jia L, Dang C, Qi Z L. An electrochemical-thermal coupling model for heat generation analysis of prismatic lithium battery[J]. J. Energy Storage, 2022, 50: 104277. |
[19] | He C X, Yue Q L, Wu M C, Chen Q, Zhao T S. A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries[J]. Int. J. Heat Mass Transf., 2021, 181: 121855. |
[20] | Zhang X, Shyy W, Marie Sastry A. Numerical simulation of intercalation induced stress in Li-ion battery electrode particles[J]. J. Electrochem. Soc., 2007, 154(10): A910-A916. |
[21] | Wu B, Lu W. Mechanical-electrochemical modeling of agglomerate particles in lithium-ion battery electrodes[J]. J. Electrochem. Soc., 2016, 163(14): A3131-A3139. |
[22] | Ouyang D X, Weng J W, Chen M Y, Wang J, Wang Z R. Electrochemical and thermal features of aging lithium-ion batteries cycled at various current rates[J]. J. Loss Pervent. Proc., 2023, 85: 105156. |
[23] | Sun B, Zhang C, Xu Z C, Liu S Z, Yang Q X. Ultrasonic diagnosis of the nonlinear aging characteristics of lithium-ion battery under high-rate discharge conditions[J]. J. Power Sources, 2023, 567: 232921. |
[24] | Zhang G X, Wei X Z, Chen S Q, Wei G, Zhu J G, Wang X Y, Han G S, Dai H F. Research on the impact of high-temperature aging on the thermal safety of lithium-ion batteries[J]. J. Energy Chem., 2023, 87: 378-389. |
[25] | Yang R J, Yu G Q, Wu Z G, Lu T T, Hu T, Liu F Q, Zhao H L. Aging of lithium-ion battery separators during battery cycling[J]. J. Energy Storage, 2023, 63: 107107. |
[26] | Zhang X Q, Li P C, Wang K Y, Zhang H Y, Huang H B. Numerical investigation on the elastoplastic behavior and fatigue life of the current collector of lithium-ion batteries based on the electrochemical-thermal-mechanical coupling model[J]. J. Energy Storage, 2023, 68: 107792. |
[27] | Luo P F, Li P C, Ma D Z, Wang K Y, Zhang H Y. Coupled electrochemical-thermal-mechanical modeling and imulation of lithium-ion batteries[J]. J. Electrochem. Soc., 2022, 169(10): 100535. |
[28] | Yu R Z, Li P C, Wang K Y, Zhang H Y. Numerical investigation on the impact of linear variation of positive electrode porosity upon the performance of lithium-ion batteries[J]. J. Electrochem. Soc., 2023, 170: 050502. |
[29] | Yin L, Borneklett A, Soderlund E, Brandell D. Analyzing and mitigating battery ageing by self-heating through a coupled thermal-electrochemical model of cylindrical Li-ion cells[J]. J. Energy Storage, 2021, 39: 102648. |
[30] | Wikner E. Division of electric power engineering, Department of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden, 2019. |
[31] | Luo P F, Li P C, Ma D Z, Wang K Y, Zhang H Y. A novel capacity fade model of lithium-ion cells considering the influence of stress[J]. J. Electrochem. Soc., 2021, 168: 090537. |
[32] | Zhang X Q, Li P C, Huang B X, Zhang H Y. Numerical investigation on the thermal behavior of cylindrical lithium-ion batteries based on the electrochemical-thermal coupling model[J]. Int. J. Heat Mass Transf., 2022, 199: 123449. |
[33] | Chen S C, Wan C C, Wang Y Y. Thermal analysis of lithium-ion batteries[J]. J. Power Sources, 2005, 140: 111. |
[34] | Wu B, Lu W. A battery model that fully couples mechanics and electrochemistry at both particle and electrode levels by incorporation of particle interaction[J]. J. Power Sources, 2017, 360: 360-372. |
[35] | Keil J, Jossen A. Electrochemical modeling of linear and nonlinear aging of lithium-ion cells[J]. J. Electrochem. Soc., 2020, 167: 110535. |
[36] | Yea Y H, Shi Y X, Cai N S, Lee J, He X M. Electro-thermal modeling and experimental validation for lithium ion battery[J]. J. Power Sources, 2012, 199: 227-238. |
[1] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[2] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[3] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[4] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[5] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[6] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
[7] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[8] | 朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003-. |
[9] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[10] | 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002-. |
[11] | 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化[J]. 电化学(中英文), 2022, 28(1): 2006131-. |
[12] | 蔡雪凡, 孙升. 多孔电极电池的循环伏安法模拟[J]. 电化学(中英文), 2021, 27(6): 646-657. |
[13] | 彭依, 张伟, 左防震, 吕浩莹, 洪凯骏. 二硒化钼纳米球储锂和储镁的性能和机理研究[J]. 电化学(中英文), 2021, 27(4): 456-464. |
[14] | 周莉, 吴勰, 薛照明. 热塑性聚氨酯基聚合物电解质的制备与表征[J]. 电化学(中英文), 2021, 27(4): 439-448. |
[15] | 李丽娟, 朱振东, 代娟, 王蓉蓉, 彭文. 锂离子电池正极材料Li[NixCoyMnz]O2 (x = 0.6, 0.85)相变对比[J]. 电化学(中英文), 2021, 27(4): 405-412. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||