欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文)

• 电化学获奖人优秀论文专辑 •    

锂氧电池中钌基电催化剂的研究进展

王昱喆a,蒋卓良a,温波a,黄耀辉a,李福军*a,b   

  1. a 南开大学化学学院先进能源材料化学教育部重点实验室,新能源转化与存储交叉科学中心,300071 b 天津物质绿色创造与制造海河实验室,300192
  • 出版日期:2024-04-29 发布日期:2024-04-29
  • 作者简介:王昱喆,蒋卓良,温波,黄耀辉,李福军

Recent Advances on Ruthenium-Based Electrocatalysts for Lithium-Oxygen Batteries

Yu-Zhe Wang a, Zhuo-Liang Jiang a, Bo Wen a, Yao-Hui Huang a, Fu-Jun Li*a,b   

  1. a Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China b Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
  • Published:2024-04-29 Online:2024-04-29
  • About author:Yu-Zhe Wang, Zhuo-Liang Jiang, Bo Wen, Yao-Hui Huang, Fu-Jun Li

摘要: 可充电锂氧(Li-O2)电池因其高能量密度而受到广泛关注。然而,缓慢的阴极动力学导致较高过电压和较差的循环性能。为了克服这一问题,不同种类的阴极催化剂已经开始被探索。其中,钌基电催化剂已被证明是促进析氧反应(OER)的极具前景的阴极催化剂。由于钌基催化剂与超氧根阴离子(O2-)中间体之间存在强相互作用,因此可以通过调节Li2O2的形态来促进过氧化锂(Li2O2)的分解。本文介绍了钌基电催化剂的设计策略,以提高其在锂氧电池中的OER催化动力学。不同结构的钌基催化剂已经被总结,包括金属颗粒(钌金属和合金)、单原子催化剂和不同底物(碳材料、金属氧化物/硫化物)负载钌的化合物,以调节钌基电催化剂的电子结构和基体结构。这些钌基电催化剂调节了对LiO2的吸附,提高了OER活性,抑制了副产物的形成,从而提升了Li-O2电池的可逆性和循环稳定性。然而,Li-O2电池仍然面临着许多挑战。其中之一是锂金属阳极的问题,锂的不稳定性和安全性一直是Li-O2电池研究的一个关键问题。此外,电解质的选择和阴极材料的优化也是当前研究的重点之一。为了提高Li-O2电池的性能,还需要对添加剂(即氧化还原介质)进行更深入的研究,以提高电池的循环寿命和能量密度。这些挑战的克服将需要跨学科的合作和持续的研究努力,以推动Li-O2电池的进一步发展。

关键词: 锂-氧电池, 钌基电催化剂, 反应机理, 反应速率, 过电压

Abstract: Rechargeable lithium-oxygen (Li-O2) batteries have attracted wide attention due to their high energy density. However, the sluggish cathode kinetics results in high overvoltages and poor cycling performance. Ruthenium (Ru)-based electrocatalysts have been demonstrated to be promising cathode catalysts to promote oxygen evolution reaction (OER). It facilitates lithium peroxide (Li2O2) decomposition by adjusting Li2O2 morphologies, which is due to the strong interaction between Ru-based catalyst and superoxide anion (O2-) intermediate. In this review, the design strategies of Ru-based electrocatalysts are introduced to enhance their OER catalytic kinetics in Li-O2 batteries. Different configurations of Ru-based catalysts, including metal particles (Ru metal and alloys), single-atom catalysts, and Ru-loaded compounds with various substrates (carbon materials, metal oxides/sulfides), have been summarized to regulate the electronic structure and the matrix architecture of the Ru-based electrocatalysts. The Ru-based catalyst structure-property relationship is discussed for a better understanding of the Li2O2 decomposition mechanism at the cathode interface. Finally, the challenges of Ru-based electrocatalysts are proposed for the future development of Li-O2 batteries.

Key words: Li-O2 battery ;Ru-based electrocatalyst, Reaction mechanism, Reaction kinetics, overvoltage