欢迎访问《电化学(中英文)》期刊官方网站,今天是

    “表界面”专题文章

    默认 最新文章 浏览次数
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 宏观均相多孔电极电化学阻抗谱基础
    李响, 黄秋安, 李伟恒, 白玉轩, 王佳, 刘杨, 赵玉峰, 王娟, 张久俊
    电化学(中英文)    2021, 27 (5): 467-497.   DOI: 10.13208/j.electrochem.201126
    摘要1936)   HTML12436)    PDF(pc) (6546KB)(1854)    收藏

    电化学阻抗谱可用于诊断多孔电极内电荷转移反应,即界面电荷集聚和电荷传导,以及反应物质输运。本文采用复相量方法,在同态假设条件下,重新推演多孔电极阻抗谱模型,厘清传统多孔电极阻抗谱模型中的模糊性表述。(1) 定义多孔电极表征输入参数,包括电极基体电子电导率σ1 、电解质离子电导率σ2、界面电荷传递电导率gct、单位面积界面电容C、固相扩散系数D、速度常数k、电极厚度d、特征孔深Lp 和单位体积表面积Sc;(2) 解析阻抗谱特征输出参数,包括场扩散常数K,特征频率ω0ω1ω2ω3ωmax,它们分别相关于界面传导反应、有限场扩散、氧化还原反应、孔内扩散和最小特征孔尺寸,以及分别对应于从传导到扩散和从扩散到饱和的转折频率fk1fk2;(3) 当参数XZ同时变化时(X = σ1Z = d,Sc,Lp,C,gct,D,k),通过阻抗谱特征参数的演变规律,分析了电荷转移反应中XΖ参数耦合竞争;(4)为深入分析电荷转移反应中参数XZ的耦合竞争,引入了分叉频率fXZfZXfXZfZX所处位置可以用于表征参数XZ影响电荷转移反应的深度和广度。当分叉频率fXZfZX不存在时,表明电荷转移反应中参数XZ在全频率范围内存在耦合竞争。总之,借助于特征频率和分叉频率,本文一方面研究了动力学参数和微观结构参数对多孔电极中电荷转移反应的影响,另一方面分析谱图的变化及其背后的阻抗谱特征演化规律。本文研究结果可为阻抗谱的系统仿真和辨识提供理论基础,可为多孔电极内电荷转移反应的竞争分析提供技术支撑,还可为电化学储能系统的优化设计提供诊断工具。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 电化学门控调节具有平行路径的单分子电路中电子传输
    苏俊青, 周一帆, 童凌, 王亚浩, 郑菊芳, 陈竞哲, 周小顺
    电化学(中英文)    2021, 27 (2): 195-201.   DOI: 10.13208/j.electrochem.201243
    摘要988)   HTML8)    PDF(pc) (595KB)(547)    收藏

    电化学门控已成为一种可行且高效调节单分子电导的方法。在本研究中,我们证实了具有两个平行苯环的单分子电路中电子传输可以通过电化学门控控制。首先,我们利用STM-BJ技术以金为电极构筑了具有两条平行路径的单分子结。与单条路径的单分子结相比,两条路径的分子结由于具有增强性量子干涉效应,具有2.82倍的电导值。进一步地,我们利用电化学门控对具有两个平行苯环的单分结的电导进行调控,获得了333%·V-1调节比。结合DFT计算,发现在E=EF附近的V形透射系数谱图导致了实验观测的电导门控行为。本研究揭示了具有平行路径的单分子电路的电化学门控行为,并为设计高性能分子器件的分子材料提供了新的途径。

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
    3. 纳米结构金电极上对氨基苯硫酚的电化学反应过程研究
    彭辉远, 王家正, 刘佳, 于欢欢, 林建德, 吴德印, 田中群
    电化学(中英文)    2022, 28 (4): 2106281-.   DOI: 10.13208/j.electrochem.210628
    摘要624)   HTML178)    PDF(pc) (1968KB)(651)    收藏

    本文研究了金电极上吸附对氨基苯硫酚(PATP)的电化学行为。在0.05 mol·L-1的硫酸溶液(pH = 1)中,从循环伏安图中可观察到PATP的不可逆电氧化峰。基于吸附PATP电化学氧化为4′-巯基-N-苯基醌二亚胺(NPQD)的反应机理,计算了电极表面PATP的覆盖度, 并在低激光功率下通过电化学表面增强拉曼光谱进行了氧化产物表征。通过电化学线性扫描伏安法及理论模拟计算,确定了PATP电化学氧化的动力学参数,即表观反应速率常数k及传递系数α,确定了生成阳离子自由基的步骤为速率控制步骤。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 金属离子电池中的磁共振:从核磁共振(NMR)到电子顺磁共振(EPR)
    胡炳文, 李超, 耿福山, 沈明
    电化学(中英文)    2022, 28 (2): 2108421-.   DOI: 10.13208/j.electrochem.210842
    摘要1259)   HTML221)    PDF(pc) (1505KB)(1118)    收藏

    金属离子电池改变了我们的日常生活。金属离子电池里的电极材料研究是提高电池性能的关键。因此,深刻理解电极材料的结构-性能关系,有助于提高材料的能量密度和功率密度。磁共振,包括核磁共振(NMR)和电子顺磁共振(EPR),在过去的三十年中不断得到改进,并逐渐成为研究电极材料结构性能关系的重要技术之一。本文总结了我们课题组在几种有趣的电极材料上的磁共振研究进展,阐释了NMR和EPR在电极材料研究中的重要作用。本文将有助于把握磁共振技术对电池研究的重要价值,促进磁共振技术的进一步发展。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 同步辐射表征技术在金属空气电池研究中的应用
    宋亚杰, 孙雪, 任丽萍, 赵雷, 孔凡鹏, 王家钧
    电化学(中英文)    2022, 28 (3): 2108461-.   DOI: 10.13208/j.electrochem.210846
    摘要841)   HTML114)    PDF(pc) (2373KB)(726)    收藏

    电动汽车的快速发展迫切需要高能量密度的电池。近年来,金属空气电池由于其超高的理论能量密度,在工业和学术领域引起了广泛的关注。然而,其副反应严重、能量效率低、循环寿命有限等诸多缺点严重阻碍了其实际应用的可行性。了解电池反应机理并进一步制定有效的策略有利于金属-空气电池的实际应用。在过去十年中,先进的表征技术加速了金属空气电池的发展。特别是基于同步加速器的表征技术因其无损检测能力和高分辨率已被广泛应用于金属空气电池的机理理解。在这篇综述中,我们系统地总结了各种用于分析金属空气电池局部结构和化学特性的同步辐射表征技术,特别关注于这些先进的表征技术如何帮助理解电池降解机理和优化策略的本质。本进展报告旨在强调同步辐射表征在金属空气电池机理理解的关键作用。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 电输运谱在原位电化学界面测量应用中的最新进展
    穆张岩, 丁梦宁
    电化学(中英文)    2022, 28 (3): 2108491-.   DOI: 10.13208/j.electrochem.210849
    摘要984)   HTML112)    PDF(pc) (3384KB)(1020)    收藏

    电化学/电催化技术是实现能源高效转化与储存的重要手段,并已经发展成为一个国际前沿领域。如今日渐深入的电催化研究开始要求更精确且多维度的电化学界面信息,从而指导实现电化学体系的优化,而这往往依赖于一些原位表征方法的发展和应用。电输运谱(electrical transport spectroscopy,ETS)是一种新兴的基于芯片平台的电化学原位表征技术,它可以实现电势扫描条件下电化学信号和电极材料电输运性质的同时获取。本文首先介绍了基于铂纳米线微纳器件的ETS信号原理(吸附现象导致的表面电子散射)和器件制作流程、几个典型电催化反应过程中铂表面状态的演变,以及电解质离子竞争吸附对铂催化氧还原反应动力学过程的影响。由于与电化学体系的高度匹配,ETS可应用于不同结构及金属类型材料体系(金和铂纳米颗粒)。金和铂表现出显著不同的离子吸附现象,尤其是对于弱吸附离子(高氯酸根和硫酸根)。通过电输运谱还可实时监测电化学过程中材料的相变及电子性质的变化。于是,ETS可被用于监测和实现二维材料电化学可控插层,理解电催化剂在电催化过程中的相变机制以及相变过程如何影响电催化活性,揭示二维半导体催化剂材料电催化过程的自门控效应。此外,ETS还被应用于生物电化学体系,探索电化学过程中的细胞导电机制。最后,本文对ETS的优点及不足进行总结,展望了ETS在未来电化学领域所面临的挑战和机遇。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 原位 57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用
    Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎
    电化学(中英文)    2022, 28 (3): 2108541-.   DOI: 10.13208/j.electrochem.210854
    摘要2443)   HTML8362)    PDF(pc) (3564KB)(5296)    收藏

    近年来,析氧反应(oxygen evolution reaction)中针对高效且具有成本效益的电催化剂开发一直是构筑有效利用可再生能源存储系统和水分解生产清洁氢能燃料的重大障碍。OER过程涉及四电子、四质子耦合并形成氧-氧(O-O)键,因此动力学上进程缓慢。为提升其在水分解产氢及二氧化碳还原反应中的应用,需要开发高效催化剂,降低OER过电位,以减轻能量转换过程中固有的能量损失。研究表明,IrO2和RuO2具有较低析氧过电位,但储量低、价格昂贵,大大限制了其在析氧反应中的大规模应用。而Ni-Fe基析氧催化剂在碱性水分解反应中展现了优异的性能,其在水分解过程中的催化机制仍有待进一步研究。
    为了解决Ni-Fe基催化剂在析氧反应过程中反应位点及催化反应机制等关键问题,迫切需要更先进的原位技术来准确表征,原位追踪催化剂形态变化与电解质/电极之间的界面相互作用的影响。光谱与电化学结合的原位技术可以监测析氧反应过程催化剂自身的变化。目前,已有大量原位光谱技术与电化学进行结合,揭示Ni-Fe基催化剂在OER过程中的反应机理及活性位点,包括原位表面增强拉曼光谱、原位同步辐射X射线吸收光谱、原位紫外-可见光谱、原位扫描电化学显微镜及原位穆斯堡尔光谱等。其中,原位拉曼技术可以观察Ni-Fe催化剂的振动,可以在电解液中施加测试电压条件下监测电化学反应过程中的中间体,从而提供实时反应信息,有助于追踪电化学驱动反应是如何发生的。原位同步辐射技术可以研究OER过程中Ni-Fe催化剂材料的电子结构和局部几何结构的信息,但目前的研究中更多的是探究Ni的价态变化,对Fe的研究信息较少。原位紫外-可见光谱也主要是针对Ni(OH)2的变化展开研究,逐渐提高施加电位,Ni(OH)2会向着NiOOH逐渐变化,紫外-可见技术可以追踪Ni-Fe基电催化剂中的金属氧化过程。众多电化学原位光谱技术中,57Fe穆斯堡尔谱因具有超高的能量分辨率,是确定催化剂相结构、鉴定活性位点、阐明催化机理以及确定催化活性与催化剂配位结构之间关系的最佳手段。此外,原位穆斯堡尔光谱技术基于原子核和核外电子的超精细相互作用而给出的同质异能移、四极矩分裂以及有效磁场等针对催化剂中的Fe位点的氧化态、电子自旋构型、对称性和磁性信息进行研究,为Ni-Fe基催化剂在析氧反应中的应用提供强有力的支持。
    1957年,德国科学家鲁道夫·路德维希·穆斯堡尔(Rudolf Ludwig Mössbauer)在其27岁时,发现作为晶格谐振子的原子在发射或吸收γ射线时以一定的概率不会改变它们的量子力学状态,而这一γ射线的核共振吸收现象于1961年获得诺贝尔物理学奖,不久后被命名为穆斯堡尔效应。穆斯堡尔效应是来自于无反冲的γ射线吸收和发射的核共振现象,能量Ee处于激发态的原子核(Z质子和N中子)通过产生能量为Eγγ射线跃迁到能量为Eg的基态,γ射线可能会被处于基态的另一个相同类型的原子核(相同的ZN)吸收,从而转变为能量Ee的激发态。只有当发射线和吸收线足够重叠时,才能看到共振吸收。
    原位穆斯堡尔谱在Ni-Fe催化剂析氧反应中应用,首先需要搭建57Fe穆斯堡尔谱仪与电化学工作站联用。标准的穆斯堡尔光谱仪主要由放射源(通常是57Co在Rh或Pd金属基质中用于57Fe穆斯堡尔光谱)、速度传感器、速度校准装置、波形发生器和同步器、γ射线检测系统、多通道分析仪、计算机,并且可选配低温恒温器或高温烘箱,以控制测量过程处于适宜温度。实际测试过程中,穆斯堡尔谱可以通过速度扫描方法生成,利用移动驱动器或速度传感器以特定速度重复移动源或样品(所谓的多普勒运动),同时γ射线连续传输或发射穿过样品并计数在同步通道上。获得穆斯堡尔谱图后,基于穆斯堡尔谱数据库(https://medc.dicp.ac.cn/,由中国科学院大连化学研究所穆斯堡尔效应数据中心从全世界收集的穆斯堡尔谱样品数据),对57Fe穆斯堡尔谱进行分析拟合,对含Fe基材料的物相、价态、自旋态和配位结构进行归因和分析。数据分析拟合主要利用MossWinn数据分析和拟合软件(http://www.mosswinn.com/)。以Ni-Fe氢氧化物催化剂为例,对于原始催化剂,其仅存在一种Fe3+物种,当该催化剂参与OER过程后,可能会存在Fe4+,在双峰基础上,拟合结果中则会出现肩峰向负侧移动现象,可以确认高价Fe的存在,例如Fe4+。为充分证明高价Fe的存在,对于Ni-Fe基催化剂的穆斯堡尔谱测试,还需在工况条件下进行原位测试。
    20世纪80年代后期,非贵金属氧化物和氢氧化物代替贵金属氧化物阳极催化剂的电解水研究开始受到关注。Corrigan等通过将Fe杂质引入NiO阳极,测试过程中发现OER活性会增加,但后续的研究中对于Fe究竟如何改变Ni基催化剂的OER性能仍旧不清晰。尔后,原位穆斯堡尔谱的引入逐渐揭开Fe在Ni-Fe电催化水分解析氧反应中的作用。为提高测试准确性并保证穆斯堡尔谱信号的稳定,本实验室对原位穆斯堡尔谱装置做了开发和改进。主要包括三部分:(1) 穆斯堡尔光谱仪,(2) 电化学工作站,以及(3) 自主设计的原位OER电化学反应池。在我们的实验室中,使用了具有14.4 keV级γ射线的单线57Fe穆斯堡尔谱放射源57Co(Rh),可以减少电解液中的信号衰减并获得令人满意的信噪比,附带CHI660E电化学工作站。对于常规的OER测试,在室温298 K条件下进行测试,测试前首先用α-Fe对穆斯堡尔谱仪进行多普勒速度校准,在进行原位穆斯堡尔谱-OER实验之前,电解液用氮气或氩气饱和以去除溶解的氧气。为了保证测试信号的准确性,实验中所使用的电解池不含任何Fe杂质,因此采用了Teflon材料。为避免测试过程中产生的O2气泡对信号产生干扰,可以采用蠕动泵循环电解液,并且保证测试过程中局部的微反应环境的一致性。对于普通OER测试,仅需要少量催化剂,但对于原位57Fe穆斯堡尔谱测试,只有保证Ni-Fe催化剂中57Fe含量充足的条件下,才可以获得高质量信号。但OER过程中,不建议催化剂载量过高,催化过程中主要是表面催化剂在反应,当样品过厚时,深层样品无法参与析氧反应过程,可能会有部分Fe仍旧维持Fe3+状态。通常,对于常规57Fe穆斯堡尔光谱测量的催化剂,若在制备中使用普通Fe源,则需要Fe含量在5 ~ 10 mg·cm-2,这其中仅有~2.2%的自然丰度57Fe同位素,需要长时间监测才可以采集到信号。为保证实验的顺利进行,可以在样品制备过程中直接使用57Fe源,方便快捷采集高质量信号。为了保证样品测试的准确性,在OER开始前,我们可以在同一电解液中,在开路电位(OCP)下,对其进行测试,这一原始样品的测试可与后续施加电位的Ni-Fe催化剂测试结果进行对比。有外加电压测试时,需要保证催化剂处于稳定状态下进行测试,整个测试过程中保持电流密度稳定,这不仅可以保证催化剂的稳定性,还有助于确定催化剂的真实结构。
    利用原位57Fe穆斯堡尔谱,我们对通过Ni-Fe普鲁士蓝类似物原位拓扑转换获得的Ni-Fe羟基氧化物电催化剂进行了测试。基于原位拉曼技术,我们发现在阳极电位下,Ni-Fe催化剂中α-Ni(OH)2相会不可逆转变为γ-NiOOH。原位57Fe穆斯堡尔谱测试结果表明,在较低的施加电位(例如1.22 V 和1.32 V vs. RHE)下,Fe在NiFe0.2-OxHy中仅处于+3氧化态,其光谱结果与开路电位下NiFe0.2-OxHy谱图相似,其中只有一个双峰,两个峰的强度相等,可归因于高自旋 Fe3+物种。但随着外加电位增加并达到1.37 V,两个峰的强度开始变得不相等,开始出现一个小的肩峰,其同质异能移(δ)值约为-0.25 mm·s-1,可以归属为 Fe4+ 。随着电压的逐渐增加,催化剂中的Fe4+含量逐渐增加。在OER过程中,施加电位1.42 V vs. RHE时,Fe4+含量~ 12%。当施加的电势达到1.57 V时,催化剂中Fe4+的含量进一步增加到约40%。这一实例充分展现了原位57Fe穆斯堡尔谱与Ni-Fe催化OER过程的应用,也体现了NiFe0.2-OxHy催化剂原位产生的Fe4+物种的量与其水氧化反应性能呈正相关,进一步加深了对Ni-Fe水氧化催化机理的理解。
    Ni-Fe基催化剂因其价格低廉,电催化析氧性能优异,因此成为碱性水分解析氧过程的理想候选者。虽然Ni-Fe基电催化剂表现出优异的OER活性,但缺乏长期稳定性阻碍了其在商业中的应用。因此,充分了解Ni-Fe催化剂的衰减机理,包括形态、组成、晶体结构和活性位点数量的变化,对于设计稳定和高效Ni-Fe催化材料非常重要,充分了解Ni-Fe催化剂在OER过程中的电子结构及其与析氧反应中间体的相互作用尤为重要。原位拉曼及原位紫外-可见光谱可以对Ni-Fe催化剂中的Ni(OH)2到NiOOH的变化进行深入探究,而原位57Fe穆斯堡尔谱测试则可以揭示Ni-Fe基催化剂中Fe的电子环境及其电子的、结构的和磁性的变化。穆斯堡尔光谱为研究Ni-Fe催化剂中Fe的局部电子结构、局部配位、键合和氧化态的提供了强大技术支撑。最近,穆斯堡尔光谱在电催化领域获得了越来越多的关注,它对于检测不同铁基催化材料中的主要活性位点有着重要作用。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 电催化氧还原反应的原位表征
    冯雅辰, 王翔, 王宇琪, 严会娟, 王栋
    电化学(中英文)    2022, 28 (3): 2108531-.   DOI: 10.13208/j.electrochem.210853
    摘要1746)   HTML237)    PDF(pc) (1344KB)(1792)    收藏

    燃料电池作为一种电化学能量转换系统,具有能量转换效率高、清洁度高等优点。氧还原反应(ORR)是燃料电池中重要的阴极反应。目前,电催化剂仍是制约燃料电池进一步商业化的关键材料之一。ORR反应催化机理的研究对于开发具有良好活性和高选择性的电催化剂具有重要价值。近年来人们通过各种先进的原位表征方法深入研究了ORR催化剂的机理和催化过程。本综述旨在总结用于原位表征技术应用于研究 ORR 反应机制的最新研究进展。我们首先简要介绍各种原位技术在ORR研究中的优势,包括电化学扫描隧道技术、 红外光谱、 拉曼光谱、 X射线吸收光谱、 X射线衍和透射电子显微镜等。然后,从催化剂的角度,总结了各种原位表征技术在催化剂形貌和电子结构演变以及催化过程中反应物和中间体的识别中的应用。最后,展望讨论了该领域原位技术的未来发展。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 电解液中Cu(111)晶面电溶解/沉积势垒施加电荷相关性的跨尺度计算
    乔行, 朱勇, 孙升, 张统一
    电化学(中英文)    2023, 29 (10): 2205171-.   DOI: 10.13208/j.electrochem.2205171
    摘要402)   HTML7)    PDF(pc) (2659KB)(630)    收藏

    电化学沉积和电化学腐蚀的核心问题是不同电压/电荷作用下的电极/电解质界面行为,其控制量是溶解/沉积反应路径的势垒,但是势垒的测量和计算难度比较大。本文采用密度泛函和连续介质耦合方法研究了不同加载电荷面密度下平整表面和含阶梯表面的Cu(111)面薄板电极直接和间接溶解/沉积两种路径的能量形态。结果发现,不同加载电荷面密度下溶质Cu原子在Cu(111)面的表面扩散和溶解过程中初末态能量分别和最高过渡态能量存在简单的线性关系,符合经典的Brønsted-Evans-Polanyi关系。在直接/间接溶解和沉积过程中,势垒和加载的电荷面密度呈线性或二次函数关系。通过这些表达式可以直接从稳态能量计算溶解/沉积和表面扩散的势垒,也可以直接计算不同加载电荷面密度下的势垒,极大的降低实验和计算工作量。通过拟合公式计算出不同临界加载电荷面密度时的势垒大小可以得出:对于溶解过程中,随着加载电荷面密度逐渐增大至0.135 |e|/Å2,阶梯处原子首先以直接溶解的方式进入到电解质溶液中;对于沉积过程,随着加载电荷面密度降低至0.105 |e|/Å2,电沉积首先发生在平整表面,并可越过较低的表面扩散势垒移动至台阶处,表面扩散是速率控制步骤。当加载电荷面密度进一步减小为0.086 |e|/Å2,此时的沉积方式以直接沉积到阶梯位置为主。

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
    10. 超微电极实验:基本原理、制备方法和伏安性能
    马桢, 林佳阳, 南文静, 韩联欢, 詹东平
    电化学(中英文)    2023, 29 (7): 2216002-.   DOI: 10.13208/j.electrochem.2216002
    摘要1023)   HTML51)    PDF(pc) (1283KB)(1368)    收藏

    超微电极电极尺寸小,双电层电容小,IR降小,传质速率快,响应快,信噪比高,兼具时间和空间分辨率,不仅可以研究快速电极反应动力学性质,而且可以作为电化学扫描显微镜探针,实现基底反应活性的成像,在电化学各个领域均有重要应用,成为一种重要的电化学实验方法。本文将扼要介绍超微电极的基本原理、一种简易的制备方法及其伏安性能的表征实验,以期对开展超微电极实验研究的电化学工作者有所裨益。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例
    谭卓, 李凯旋, 毛秉伟, 颜佳伟
    电化学(中英文)    2023, 29 (7): 2216003-.   DOI: 10.13208/j.electrochem.2216003
    摘要315)   HTML22)    PDF(pc) (1603KB)(413)    收藏

    电化学扫描隧道显微术能在电解质溶液中获得随电位变化的电极表面高空间分辨率的结构信息及跟踪某些反应过程,为从高空间分辨率的角度理解界面结构和电极过程提供了一种强有力的手段。本文以电化学扫描隧道显微术研究Cu在Au(111)上电沉积初始阶段过程为例,与读者交流电化学扫描隧道显微术实验方面的经验,涉及实验装置、实验操作、实验步骤和注意事项等。

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
    12. 陷阱态对Ag-TiO2光诱导界面电荷转移的影响:电化学、光电化学和光谱表征
    梁志豪, 王家正, 王丹, 周剑章, 吴德印
    电化学(中英文)    2023, 29 (8): 2208101-.   DOI: 10.13208/j.electrochem.2208101
    摘要360)   HTML12)    PDF(pc) (3186KB)(529)    收藏

    在基于金属-半导体异质结构的等离激元介导化学反应中,了解其中的电荷转移和复合机制进而调控界面、提高界面电荷分离,对于提高等离激元催化反应效率至关重要。但电化学体系中固液界面上的等离激元光电催化反应是一个多过程、多时间尺度、多影响因素的复杂体系,光生载流子在界面间传递机制的研究仍面临着巨大的挑战。由于光电化学信号的产生和变化包含了诸多体相和界面过程,因此光电化学方法是探究等离激元催化反应过程中的界面电荷转移机制的有效手段之一。本文合成了TiO2和Ag-TiO2纳米粒子,以光电化学方法作为主要研究手段,并结合电化学和各种谱学表征手段,探究了电极陷阱态对界面电荷转移机制的影响。结果表明,在Ag负载在TiO2表面后,电极的陷阱态显著增加。结合XPS以及PL光谱,陷阱态增加可主要归咎于表面羟基。陷阱态的增加导致了荧光的猝灭和光电响应的减弱,但增加的陷阱态复合过程也延长了载流子的寿命。陷阱态的调控必然会影响界面电荷转移,从而改变热载流子的数量和寿命,进而调控后续Ag界面上的等离激元反应。在反应位点位于金属的基于金属-半导体复合体系的等离激元催化反应中,认识到半导体陷阱态对于界面电荷转移的作用有助于在等离激元介导化学反应中更好地利用载流子、提高反应效率。

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
    13. 碳酸酯类电解液中纳米银电极界面过程的原位拉曼光谱研究
    谷宇, 胡元飞, 王卫伟, 尤恩铭, 唐帅, 苏建加, 易骏, 颜佳伟, 田中群, 毛秉伟
    电化学(中英文)    2023, 29 (12): 2301261-.   DOI: 10.13208/j.electrochem.2301261
    摘要501)   HTML16)    PDF(pc) (1840KB)(507)    收藏

    锂电池体系中负极表面固态电解质界面相(SEI)对锂电池性能起到至关重要的作用。然而,SEI结构和化学组成复杂,其形成机理至今仍未完全阐明,阻碍了锂电池的发展和应用。本文从方法学角度出发,采用表面增强拉曼光谱(SERS)“借力”策略,通过优化银纳米粒子的结构并借助其外来表面局域等离激元共振作用,开展以EC-DMC为溶剂的碳酸酯类电解液体系中SEI成膜过程的原位研究。为了确保可靠的原位SERS测试,我们设计了一种三电极体系气密拉曼电池。我们利用原位SERS方法,在纳米银电极上获得了SEI成膜过程的组成和结构信息。研究表明,SEI随电位变化呈现出双层结构,其中内层由薄且致密的无机组分构成,外层由疏松的有机组分构成。同时,研究发现LEMC是EC还原的主要成分,而不是LEDC,且金属锂参与的化学反应在形成稳定SEI中的起到关键作用。此外,锂发生沉积后,由于锂与银的合金效应导致其介电常数发生变化,从而削无法进一步增强SEI的拉曼信号。本文为深入理解负极表面SEI的形成及演变过程提供依据,并为今后开展锂电池体系相关界面过程的原位研究提供借鉴。

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价