电化学(中英文) ›› 2022, Vol. 28 ›› Issue (3): 2108531. doi: 10.13208/j.electrochem.210853
所属专题: “表界面”专题文章; “电催化和燃料电池”专题文章
冯雅辰1,2, 王翔1,2, 王宇琪1,2, 严会娟1,2, 王栋1,2,*()
收稿日期:
2021-11-24
修回日期:
2022-02-05
出版日期:
2022-03-28
发布日期:
2022-03-08
Ya-Chen Feng1,2, Xiang Wang1,2, Yu-Qi Wang1,2, Hui-Juan Yan1,2, Dong Wang1,2,*()
Received:
2021-11-24
Revised:
2022-02-05
Published:
2022-03-28
Online:
2022-03-08
Contact:
*Tel: (86-10)82616935, E-mail: wangd@iccas.ac.cn
摘要:
燃料电池作为一种电化学能量转换系统,具有能量转换效率高、清洁度高等优点。氧还原反应(ORR)是燃料电池中重要的阴极反应。目前,电催化剂仍是制约燃料电池进一步商业化的关键材料之一。ORR反应催化机理的研究对于开发具有良好活性和高选择性的电催化剂具有重要价值。近年来人们通过各种先进的原位表征方法深入研究了ORR催化剂的机理和催化过程。本综述旨在总结用于原位表征技术应用于研究 ORR 反应机制的最新研究进展。我们首先简要介绍各种原位技术在ORR研究中的优势,包括电化学扫描隧道技术、 红外光谱、 拉曼光谱、 X射线吸收光谱、 X射线衍和透射电子显微镜等。然后,从催化剂的角度,总结了各种原位表征技术在催化剂形貌和电子结构演变以及催化过程中反应物和中间体的识别中的应用。最后,展望讨论了该领域原位技术的未来发展。
冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531.
Ya-Chen Feng, Xiang Wang, Yu-Qi Wang, Hui-Juan Yan, Dong Wang. In Situ Characterization of Electrode Structure and Catalytic Processes in the Electrocatalytic Oxygen Reduction Reaction[J]. Journal of Electrochemistry, 2022, 28(3): 2108531.
Figure 1
(A) Potential-dependent Pt L3-edge XAS spectra of Pt NPs on a carbon support. (B) Evolution of the metallic, oxide and the total area of the catalyst as a function of the applied potential. (C) STM image of the as-prepared Pt(111) surface. (D) STM image of the Pt(111) electrode after the 25th sweep in 0.1 mol·L-1 KOH solutions containing Co2+. (A-B) Reproduced from Ref[31]. With permission from the American Chemical Society. (C-D) Reproduced from Ref[21]. With permission from the American Chemical Society. (color on line)
Figure 2
(A) In situ atomic PDFs for Pd30Ni70NPs obtained in a custom-built fuel cell cycled between 0.6 ~ 1.2 V (vs. RHE) at a scan rate of 100 mV·s-1. (B) Trend for the change in composition of Pd30Ni70/C catalyst as a result of Ni-leaching during the potential cycling. (C) Morphologies of Pt-Fe nanocatalysts at additional 5th, 50th, and 150th cycles after the first 130 cycles. (D) The corresponding CV curves at 1st, 5th, 25th, 50th, 100th, and 150th cycles. (A-B) Reproduced from ref[41]. With permission from the American Chemical Society. (C-D) Reproduced from ref[42]. With permission from the American Chemical Society. (color on line)
Figure 3
(A) In situ XANES spectra at the Mn K-edge for the MnO2 at different electrode potentials in 1.0 mol·L-1 KOH. (B) In situ XANES spectra of the Co-PPy-BP cathode and standard Co, Co(OH)2 and CoOOH samples. (A) Reproduced from ref[29]. With permission from the Elsevier. (B) Reproduced from ref[45]. With permission from the Royal Society of Chemistry. (color on line)
Figure 4
(A) SHINERS spectra of the ORR system at a Pt(111) electrode surface in a 0.1 mol·L-1 HClO4 solution saturated with O2.(B) SHINERS spectra of the ORR at a Pt(100) electrode surface in a 0.1 mol·L-1 HClO4 solution. (C) SHINERS spectra of the ORR at a Pt(100) electrode surface in a 0.1 mol·L-1 HClO4 solution. (D) SHINERS spectra of the ORR system at a Pt(111) electrode surface in 0.1 mol·L-1 NaClO4 solution (pH of approximately 10.3) saturated with O2. (E) SHINERS spectra of the ORR at a Pt(100) electrode surface in 0.1 mol·L-1 NaClO4 solution (pH of approximately 10.3) saturated with O2. (F) SHINERS spectra of the ORR at a Pt(100) electrode surface in 0.1 mol·L-1 NaClO4 solution (pH of approximately 10.3) saturated with O2. (G) In situ IR spectra of Pt/C during ORR in 0.1 mol·L-1 HClO4 solution. (H) In situ SHINERS spectra of ORR on dealloyed Pt3Co nanocatalysts in 0.1 mol·L-1 O2-saturated HClO4 solution. (I) In situ SHINERS spectra of the ORR on dealloyed Pt3Co nanocatalysts in O2-saturated 0.1 mol·L-1 NaClO4 + 0.001 mol·L-1 NaOH solutions. (A-F) Reproduced from Ref[46]. With permission from the Nature Energy. (G) Reproduced from Ref[32]. With permission from the Wiley Online Library. (H-I) Reproduced from Ref[38]. With permission from the Wiley Online Library. (color on line)
Figure 5
(A-B) In situ STM images of FePc on Au(111) in O2-saturated 0.1 mol·L-1 HClO4: (A) ORR off; (B) ORR on. (C-D) STM topographic image (C) and cross-section analysis (D) of Mn1Cl at the HOPG/1-octanoic acid interface under ambient conditions; (E) Possible pathways and states of the manganese centre of Mn-porphyrins during their reaction with O2. (A-B) Reproduced from Ref[49]. With permission from the American Chemical Society. (C-E) Reproduced from Ref[50]. With permission from the Nature Chemistry. (color on line)
[1] | Sharaf O Z, Orhan M F. An overview of fuel cell technology: Fundamentals and applications[J]. Renew. Sust. Enegy Rev., 2014, 32:810-853. |
[2] |
Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861):345-352.
doi: 10.1038/35104620 URL |
[3] |
Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401):43-51.
doi: 10.1038/nature11115 URL |
[4] |
Badwal S P S, Giddey S, Kulkarni A, Goel J, Basu S. Direct ethanol fuel cells for transport and stationary applications-A comprehensive review[J]. Appl. Energ., 2015, 145:80-103.
doi: 10.1016/j.apenergy.2015.02.002 URL |
[5] |
Wang W, Su C, Wu Y Z, Ran R, Shao Z P. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chem. Rev., 2013, 113(10):8104-8151.
doi: 10.1021/cr300491e pmid: 23902155 |
[6] |
Wu G, More K L, Johnston C M, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028):443-447.
doi: 10.1126/science.1200832 URL |
[7] |
Kuttiyiel K A, Sasaki K, Su D, Wu L J, Zhu Y M, Adzic R R. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction[J]. Nat. Commun., 2014, 5:5185.
doi: 10.1038/ncomms6185 pmid: 25373826 |
[8] |
Lu Y Z, Jiang Y Y, Gao X H, Wang X D, Chen W. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and sability as oxygen reduction electrocatalysts[J]. J. Am. Chem. Soc., 2014, 136(33):11687-11697.
doi: 10.1021/ja5041094 URL |
[9] |
Savadogo O, Lee K, Oishi K, Mitsushima S, Kamiya N, Ota K I. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium[J]. Electrochem. Commun., 2004, 6(2):105-109.
doi: 10.1016/j.elecom.2003.10.020 URL |
[10] |
Wang X, Choi S I, Roling L T, Luo M, Ma C, Zhang L, Chi M F, Liu J Y, Xie Z X, Herron J A, Mavrikakis M, Xia Y N. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction[J]. Nat. Commun., 2015, 6:7594.
doi: 10.1038/ncomms8594 pmid: 26133469 |
[11] |
Miner, E M, Fukushima, T, Sheberla, D, Sun L, Surendr-anath Y, Dinca M. Electro-chemical oxygen reduction ca-talysed by Ni3(hexaimino-triphenylene)2[J]. Nat. Commun., 2016, 7:10942.
doi: 10.1038/ncomms10942 URL |
[12] |
Masa J, Xia W, Muhler M, Schuhmann W. On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction[J]. Angew. Chem. Int. Edit., 2015, 54(35):10102-10120.
doi: 10.1002/anie.201500569 URL |
[13] |
Tang H J, Yin H J, Wang J Y, Yang N L, Wang D, Tang Z Y. Molecular architecture of cobalt porphyrin multilayers on reduced graphene oxide sheets for high-performance oxygen reduction reaction[J]. Angew. Chem. Int. Edit., 2013, 52(21):5585-5589.
doi: 10.1002/anie.201300711 URL |
[14] |
Ding K Q, Cheng F M. Cyclic voltammetrically prepared MnO2-PPy composite material and its electrocatalysis towards oxygen reduction reaction (ORR)[J]. Synthetic Met., 2009, 159(19-20):2122-2127.
doi: 10.1016/j.synthmet.2009.08.005 URL |
[15] |
Allen C J, Hwang J, Kautz R, Mukerjee S, Plichta E J, Hendrickson M A, Abraham K M. Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li-air batteries[J]. J. Phys. Chem. C, 2012, 116(39):20755-20764.
doi: 10.1021/jp306718v URL |
[16] |
Roche I, Chaǐnet E, Chatenet M, Vondrak J. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline me-dium: physical characterizations and ORR mechanism[J]. J. Phys. Chem. C, 2007, 111(3):1434-1443.
doi: 10.1021/jp0647986 URL |
[17] |
Kuang F, Zhang D, Li Y J, Wan Y, Hou B R. Electrochemical impedance spectroscopy analysis for oxygen reduction reaction in 3.5% NaCl solution[J]. J. Solid State Electr., 2009, 13(3):385-390.
doi: 10.1007/s10008-008-0570-y URL |
[18] |
Queuedo M C, Galicia G, Mayen-Mondragon R, Llongu-eras J G. Role of turbulent flow seawater in the corrosion enhancement of an Al-Zn-Mg alloy: an electrochemical impedance spectroscopy (EIS) analysis of oxygen reduction reaction (ORR)[J]. J. Mater. Res. Technol., 2018, 7(2):149-157.
doi: 10.1016/j.jmrt.2017.06.004 URL |
[19] |
Feng L Y, Liu Y J, Zhao J X. Iron-embedded boron nitride nanosheet as a promising electrocatalyst for the oxygen reduction reaction (ORR): a density functional theory (DFT) study[J]. J. Power Sources, 2015, 287:431-438.
doi: 10.1016/j.jpowsour.2015.04.094 URL |
[20] | Seifitokaldani A, Savadogo O, Perrier M. Density functional theory (DFT) computation of the oxygen reduction reaction (ORR) on titanium nitride (TiN) surface[J]. Ele-ctrochim. Acta., 2014, 141:25-32. |
[21] |
Subbaraman R, Danilovic N, Lopes P P, Tripkovic D, Strmcnik D, Stamenkovic V R, Markovic N M. Origin of anomalous activities for electrocatalysts in alkaline electrolytes[J]. J. Phys. Chem. C, 2012, 116(42):22231-22237.
doi: 10.1021/jp3075783 URL |
[22] |
Li D G, Wang C, Strmcnik D S, Strmcnik D S, Tripkovic D V, Sun X L, Kang Y J, Chi M F, Snyder J D, van der Vliet D, Tsai Y F, Stamenkovic V R, Sun S H, Markovic N M. Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case[J]. Energ. Environ. Sci., 2014, 7(12):4061-4069.
doi: 10.1039/C4EE01564A URL |
[23] | Wan L J, Moriyama T, Ito M, Uchida H, Watanabe M. In situ STM imaging of surface dissolution and rearrangement of a Pt-Fe alloy electrocatalyst in electrolyte solution[J]. Chem. Commun., 2002(1):58-59. |
[24] |
Todoroki N, Iijima Y, Takahashi R, Asakimori Y, Wadayama T. Structure and electrochemical stability of Pt-enriched Ni/Pt(111) topmost surface prepared by molecular beam epitaxy[J]. J. Electrochem. Soc., 2013, 160(6):F591-F596.
doi: 10.1149/2.082306jes URL |
[25] |
Yoshimoto S, Tada A, Itaya K. In situ scanning tunneling microscopy study of the effect of iron octaethylporphyrin adlayer on the electrocatalytic reduction of O2 on Au (111)[J]. J. Phys. Chem. B, 2004, 108(17):5171-5174.
doi: 10.1021/jp049667o URL |
[26] |
Gocyla M, Kuehl S, Shviro M, Heyen H, Selve S, Dunin-Borkowski R E, Heggen M, Strasser P. Shape stability of octahedral PtNi nanocatalysts for electrochemical oxygen reduction reaction studied by in situ transmission electron microscopy[J]. ACS Nano, 2018, 12(6):5306-5311.
doi: 10.1021/acsnano.7b09202 URL |
[27] |
Gatalo M, Ruiz-Zepeda F, Hodnik N, Drazic G, Bele M, Gaberscek M. Insights into thermal annealing of highly-active PtCu3/C oxygen reduction reaction electrocatalyst: An in situ heating transmission electron microscopy study[J]. Nano Energy, 2019, 63:103892.
doi: 10.1016/j.nanoen.2019.103892 URL |
[28] |
Strickland K, Miner E, Jia Q, Tylus U, Ramaswamy N, Liang W T, Sougrati M T, Jaouen F, Mukerjee S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination[J]. Nat. Commun., 2015, 6:7343.
doi: 10.1038/ncomms8343 pmid: 26059552 |
[29] |
Lima F H B, Calegaro M L, Ticianelli E A. Electrocataly-tic activity of manganese oxides prepared by thermal decomposition for oxygen reduction[J]. Electrochim. Acta., 2007, 52(11):3732-3738.
doi: 10.1016/j.electacta.2006.10.047 URL |
[30] |
Celorrio V, Leach A S, Huang H L, Hayama S, Freeman A, Inwood D W, Fermin D J, Russell A E. Relationship between Mn oxidation state changes and oxygen reduction activity in (La, Ca) MnO3 as probed by in situ XAS and XES[J]. ACS Catal., 2021, 11(11):6431-6439.
doi: 10.1021/acscatal.1c00997 URL |
[31] |
Merte L R, Behafarid F, Miller D J, Friebel D, Cho S, Mbuga F, Sokaras D, Alonso-Mori R, Weng T C, Nordlund D. Electrochemical oxidation of size-selected Pt nanoparticles studied using in situ high-energy-resolution X-ray absorption spectroscopy[J]. ACS Catal., 2012, 2(11):2371-2376.
doi: 10.1021/cs300494f URL |
[32] |
Nayak S, McPherson I J, Vincent K A. Adsorbed intermediates in oxygen reduction on platinum nanoparticles observed by in situ IR spectroscopy[J]. Angew. Chem. Int. Edit., 2018, 57(39):12855-12858.
doi: 10.1002/anie.201804978 URL |
[33] |
Shao M H, Liu P, Adzic R R. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes[J]. J. Am. Chem. Soc., 2006, 128(23):7408-7409.
doi: 10.1021/ja061246s URL |
[34] |
Baranton S, Coutanceau C, Garnier E, Leger J M. How does α-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (ORR)?[J]. J. Electroanal. Chem., 2006, 590(1):100-110.
doi: 10.1016/j.jelechem.2006.03.007 URL |
[35] |
Nayak S, Biedermann P U, Stratmann M, Erbe A. A me-chanistic study of the electrochemical oxygen reduction on the model semiconductor n-Ge(100) by ATR-IR and DFT[J]. Phys. Chem. Chem. Phys., 2013, 15(16):5771-5781.
doi: 10.1039/C2CP43909C URL |
[36] |
Frith J T, Russell A E, Garcia-Araez N, Owen J R. An in situ Raman study of the oxygen reduction reaction in ionic liquids[J]. Electrochem. Commun., 2014, 46:33-35.
doi: 10.1016/j.elecom.2014.06.001 URL |
[37] |
Sugimura F, Sakai N, Nakamura T, Nakamura M, Ikeda K, Sakai T, Hoshi N. In situ observation of Pt oxides on the low index planes of Pt using surface enhanced Raman spectroscopy[J]. Phys. Chem. Chem. Phys., 2017, 19(40):27570-27579.
doi: 10.1039/c7cp04277a pmid: 28980691 |
[38] |
Wang Y H, Le J B, Li W Q, Wei J, Radjenovic P M, Zhang H, Zhou X S, Cheng J, Tian Z Q, Li J F. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR)[J]. Angew. Chem. Int. Ed., 2019, 58(45):16062-16066.
doi: 10.1002/anie.201908907 URL |
[39] |
Ze H J, Chen X, Wang X T, Wang Y H, Chen Q Q, Lin J S, Zhang Y J, Zhang X G, Tian Z Q, Li J F. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy[J]. J. Am. Chem. Soc., 2021, 143(3):1318-1322.
doi: 10.1021/jacs.0c12755 URL |
[40] |
Dong J C, Su M, Briega-Martos V, Li L, Le J B, Radjenovic P, Zhou X S, Feliu J M, Tian Z Q, Li J F. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt (hkl) surfaces[J]. J. Am. Chem. Soc., 2019, 142(2):715-719.
doi: 10.1021/jacs.9b12803 URL |
[41] |
Wu J F, Shan S Y, Petkov V, Prasai B, Cronk H, Joseph P, Luo J, Zhong C J. Composition-structure-activity relationships for palladium-alloyed nanocatalysts in oxygen reduction reaction: an ex-situ/in situ high energy X-ray diffraction study[J]. ACS Catal., 2015, 5(9):5317-5327.
doi: 10.1021/acscatal.5b01608 URL |
[42] |
Zhu G Z, Prabhudev S, Yang J, Gabardo C M, Botton G A, Soleymani L. In situ liquid cell TEM study of morphological evolution and degradation of Pt-Fe nanocatalysts during potential cycling[J]. J. Phys. Chem. C, 2014, 118(38):22111-22119.
doi: 10.1021/jp506857b URL |
[43] |
Brenet J P. Electrochemical behaviour of metallic oxides[J]. J. Power Sources, 1979, 4(3):183-190.
doi: 10.1016/0378-7753(79)85009-0 URL |
[44] |
Mao L Q, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T. Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts[J]. Electrochim. Acta., 2003, 48(8):1015-1021.
doi: 10.1016/S0013-4686(02)00815-0 URL |
[45] |
Qin H Y, Lin L X, Jia J K, Ni H L, He Y, Wang J, Li A G, Ji Z G, Liu J B. Synchrotron radiation in situ X-ray absorption fine structure and in situ X-ray diffraction analysis of a high-performance cobalt catalyst towards the oxygen reduction reaction[J]. Phys. Chem. Chem. Phys., 2017, 19(45):30749-30755.
doi: 10.1039/C7CP05888H URL |
[46] |
Dong J C, Zhang X G, Briega-Martos V, Jin X, Yang J, Chen S, Yang Z L, Wu D Y, Feliu J M, Williams C T, Tian Z Q, Li J F. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces[J]. Nat. Energy, 2019, 4(1):60-67.
doi: 10.1038/s41560-018-0292-z |
[47] |
Friesen B A, Bhattarai A, Mazur U, Hipps K W. Single molecule imaging of oxygenation of cobalt octaethylporphyrin at the solution/solid interface: thermodynamics from microscopy[J]. J. Am. Chem. Soc., 2012, 134(36):14897-14904.
doi: 10.1021/ja304431b URL |
[48] |
Hulsken B, Van Hameren R, Gerritsen J W, Khoury T, Thordarson P, Crossley M J, Rowan A E, Nolte R J M, Elemans J A A W, Speller S. Real-time single-molecule imaging of oxidation catalysis at a liquid-solid interface[J]. Nat. Nanotechnol., 2007, 2(5):285-289.
doi: 10.1038/nnano.2007.106 pmid: 18654285 |
[49] |
Gu J Y, Cai Z F, Wang D, Wang L J. Single-molecule imaging of iron-phthalocyanine-catalyzed oxygen reduction reaction by in situ scanning tunneling microscopy[J]. ACS Nano, 2016, 10(9):8746-8750.
doi: 10.1021/acsnano.6b04281 URL |
[50] |
Cai Z F, Wang X, Wang D, Wang L J. Cobalt-porphyrincatalyzed oxygen reduction reaction: A scanning tunneling microscopy study[J]. ChemElectroChem, 2016, 3(12):2048-2051.
doi: 10.1002/celc.201600435 URL |
[51] |
Den Boer D, Li M, Habets T, Iavicoli P, Rowan A E, Nolte R J M, Speller S, Amabilino D B, De Feyter S, Elemans J A A W. Detection of different oxidation states of individual manganese porphyrins during their reaction with oxygen at a solid/liquid interface[J]. Nat. Chem., 2013, 5(7):621-627.
doi: 10.1038/nchem.1667 URL |
[52] |
Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mar-iscal M M, Peressi M, Comelli G. Real-time imaging of adatom-promoted graphene growth on nickel[J]. Science, 2018, 359(6381):1243-1246.
doi: 10.1126/science.aan8782 URL |
[53] |
Rahn B, Magnussen O M. Sulfide surface dynamics on Cu(100) and Ag(100) electrodes in the presence of c (2×2) halide adlayers[J]. ChemElectroChem, 2018, 5(20):3073-3082.
doi: 10.1002/celc.201800617 URL |
[54] |
Borfecchia E, Garino C, Gianolio D, Salassa L, Gobetto R, Lamberti C. Monitoring excited state dynamics in cis-[Ru(bpy)2(py)2]2+ by ultrafast synchrotron techniques[J]. Catal. Today., 2014, 229:34-45.
doi: 10.1016/j.cattod.2013.11.057 URL |
[55] |
Ustarroz J, Ornelas I M, Zhang G H, Perry D, Kang M, Bentley C L, Walker M, Unwin P R. Mobility and poisoning of mass-selected platinum nanoclusters during the oxygen reduction reaction[J]. ACS Catal., 2018, 8(8):6775-6790.
doi: 10.1021/acscatal.8b00553 URL |
[56] |
Su H S, Zhang X G, Sun J J, Jin X, Wu D Y, Lian X B, Zhong J H, Ren B. Real-space observation of atomic sitespecific electronic properties of a Pt nanoisland/Au(111) bimetallic surface by tip-enhanced Raman spectroscopy[J]. Angew. Chem. Int. Ed., 2018, 57(40):13177-13181.
doi: 10.1002/anie.201807778 URL |
[57] |
Edmondson J F, Meloni G N, Costantini G, Unwin P R. Synchronous electrical conductance-and electron tunnelling-scanning electrochemical microscopy measurements[J]. ChemElectroChem, 2020, 7(3):697-706.
doi: 10.1002/celc.201901721 URL |
[1] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[2] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[3] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[4] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[5] | 穆张岩, 丁梦宁. 电输运谱在原位电化学界面测量应用中的最新进展[J]. 电化学(中英文), 2022, 28(3): 2108491-. |
[6] | 袁会芳, 张越, 翟兴吾, 胡立兵, 葛桂贤, 王刚, 于锋, 代斌. 氮掺杂碳原位锚定铜纳米颗粒用于高效氧还原反应催化剂[J]. 电化学(中英文), 2021, 27(6): 671-680. |
[7] | 林华, 吴艺津, 李君涛, 周尧. 一锅法制备Fe2O3@Fe-N-C氧还原电催化剂及其锌-空气电池的性能研究[J]. 电化学(中英文), 2021, 27(4): 366-376. |
[8] | 李文杰, 田东旭, 杜红, 燕希强. ORR催化剂Nim@Pt1Aun-m-1 (n = 19, 38, 55, 79; m = 1, 6, 13, 19)的密度泛函研究[J]. 电化学(中英文), 2021, 27(4): 357-365. |
[9] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
[10] | 徐明俊, 刘杰, 葛君杰, 刘长鹏, 邢巍. 长春应化所金属氮碳氧还原催化剂的研究进展[J]. 电化学(中英文), 2020, 26(4): 464-473. |
[11] | 徐能能, 乔锦丽. 锌-空气电池双功能催化剂研究进展[J]. 电化学(中英文), 2020, 26(4): 531-562. |
[12] | 杨智, 沈亚云, 周娥, 魏成玲, 秦好丽, 田娟. 前驱体中N含量对FeN/C催化剂氧还原活性的影响研究[J]. 电化学(中英文), 2020, 26(1): 130-135. |
[13] | 梁 栋, 房恒义, 姚 硕, 于洁玫, 张昭良, 姜占坤, 高学平, 黄太仲. 不同结构及氮掺杂NiO/rGO氧还原催化剂的制备与性能研究[J]. 电化学(中英文), 2019, 25(5): 589-600. |
[14] | 张利华, 陈峻峰, 黄皖唐, 胡勇有, 程建华, 陈元彩. Cu-bipy-BTC衍生碳基材料的制备及其氧还原电催化性能[J]. 电化学(中英文), 2019, 25(4): 511-521. |
[15] | 张雅琳,陈驰,邹亮亮,邹志青,杨辉. Fe-N共掺杂的碳纳米管串联空心球对氧还原反应的电催化[J]. 电化学(中英文), 2018, 24(6): 726-732. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||