电化学(中英文) ›› 2022, Vol. 28 ›› Issue (3): 2108491. doi: 10.13208/j.electrochem.210849
收稿日期:
2021-11-01
修回日期:
2021-12-31
出版日期:
2022-03-28
发布日期:
2022-01-10
Zhang-Yan Mu, Meng-Ning Ding*()
Received:
2021-11-01
Revised:
2021-12-31
Published:
2022-03-28
Online:
2022-01-10
Contact:
*Tel: (86-25)89681724, E-mail: mding@nju.edu.cn
摘要:
电化学/电催化技术是实现能源高效转化与储存的重要手段,并已经发展成为一个国际前沿领域。如今日渐深入的电催化研究开始要求更精确且多维度的电化学界面信息,从而指导实现电化学体系的优化,而这往往依赖于一些原位表征方法的发展和应用。电输运谱(electrical transport spectroscopy,ETS)是一种新兴的基于芯片平台的电化学原位表征技术,它可以实现电势扫描条件下电化学信号和电极材料电输运性质的同时获取。本文首先介绍了基于铂纳米线微纳器件的ETS信号原理(吸附现象导致的表面电子散射)和器件制作流程、几个典型电催化反应过程中铂表面状态的演变,以及电解质离子竞争吸附对铂催化氧还原反应动力学过程的影响。由于与电化学体系的高度匹配,ETS可应用于不同结构及金属类型材料体系(金和铂纳米颗粒)。金和铂表现出显著不同的离子吸附现象,尤其是对于弱吸附离子(高氯酸根和硫酸根)。通过电输运谱还可实时监测电化学过程中材料的相变及电子性质的变化。于是,ETS可被用于监测和实现二维材料电化学可控插层,理解电催化剂在电催化过程中的相变机制以及相变过程如何影响电催化活性,揭示二维半导体催化剂材料电催化过程的自门控效应。此外,ETS还被应用于生物电化学体系,探索电化学过程中的细胞导电机制。最后,本文对ETS的优点及不足进行总结,展望了ETS在未来电化学领域所面临的挑战和机遇。
穆张岩, 丁梦宁. 电输运谱在原位电化学界面测量应用中的最新进展[J]. 电化学(中英文), 2022, 28(3): 2108491.
Zhang-Yan Mu, Meng-Ning Ding. Recent Advances in Electrical Transport Spectroscopy for the in Situ Measurement of Electrochemical Interfaces[J]. Journal of Electrochemistry, 2022, 28(3): 2108491.
Figure 1
(A) Theoretical size and surface scattering effect of one-dimensional metallic wires. Black squares and circles represent the size dependent resistivity. Triangles represent the size dependent ETS responses caused by different electron scattering. (B) Schematic illustration of the double layer model in concurrent CV and ETS measurements. Reproduced with permission[10]. Copyright 2015, Nature Publishing Group. (color on line)
Figure 2
Schematic illustration and optical images of device fabrication process for concurrent CV and ETS measurements (top), and schematic illustration of the cross-sectional view of the device and the measurement configuration (bottom). Reproduced with permission[10]. Copyright 2015, Nature Publishing Group. (color on line)
Figure 3
Electrical transport spectroscopic (ETS) measurement on the PtNWs in acidic condition. (A) IG-VG (CV) and GSD-VG (ETS) curves of PtNWs in 0.1 mol·L-1 HClO4. (B) Differentiated result of ETS in (A) (dETS). (C) Schematic illustrations of the different surface states of Pt with the potential scanning (the left black axis) and the corresponding conductivity changes (the right red axis). Reproduced with permission[10]. Copyright 2015, Nature Publishing Group. (color on line)
Figure 4
In situ ETS studies of PROR, MOR and FAOR on PtNWs. (A and B) IG-VG (CV) (A) and GSD-VG (ETS) (B) curves of PtNWs during PROR at different concentrations of H2O2 with the baseline process in HClO4 (the black curve). (C) GSD values (the black square) of the surface oxide at different concentrations of H2O2. (D and E) IG-VG (CV) (D) and GSD-VG (ETS) (E) curves of PtNWs during MOR and FAOR with the baseline process in HClO4 (the black curve). (F) dETS curves of PtNWs during MOR (red), FAOR (blue) and CO striping (green). Reproduced with permission[10]. Copyright 2015, Nature Publishing Group. (color on line)
Figure 5
In situ ETS study of halide adsorption on Pt surface. (A) IG-VG (CV) curves of PtNWs in 0.1 mol·L-1 HClO4 (black) and with the addition of varying concentrations of sodium chloride. (B) ISD-VG (ETS) curves of PtNWs in 0.1 mol·L-1 HClO4 (black) and with the addition of 1 mmol·L-1 chloride anions (red). (C) dETS curves of PtNWs with varying chloride concentrations. Insets on the right depict the enlarged spectra at double layer and hydrogen desorption regions. (D) ETS current of the PtNWs device in D.L. (left, value obtained at 0.5 V vs. RHE) and oxidation (right, value obtained at 0.9 V vs. RHE) regions at different chloride concentrations. Electrically derived surface coverage of Clads at the D.L. region and percentage of blocked Oads by Clads in oxidation region are given at the corresponding right axis. (E) ISD-VG (ETS) curves of PtNWs in 0.1 mol·L-1 HClO4 and with the additions of 1 mmol·L-1 chloride, bromide and anions. (F, G) dETS characteristics of halide adsorptions. Reproduced with permission[25]. Copyright 2018, American Chemical Society. (color on line)
Figure 6
Perchlorate and sulfate adsorptions on AuNPs. (a and b) ISD-VG (ETS, (A)) and dETS (B) curves of AuNPs in 0.1 mol·L-1 HClO4 (black) and with the addition of 0.1 mol·L-1 NaClO4 (red). The inset shows the enlarged positive-going spectra of dETS curves in (B). (C and D) ISD-VG (ETS, (C)) and dETS (D) curves of AuNPs in 0.1 mol·L-1 HClO4 with varying scan rates. (E) ETS current of AuNPs in the D.L. region (value from (C) obtained at 0.94 V) under different scan rates. (F) Enlarged positive-going spectra of dETS curves in (D). (G) ISD-VG (ETS) curves of AuNPs in 0.1 mol·L-1 HClO4 with varying perchlorate and sulfate concentrations. (H) ETS current collected at 1 V in the positive-sweeping spectra of (G). Reproduced with permission[26]. Copyright 2020, American Chemical Society. (color on line)
Figure 7
(A) The on-chip in situ monitoring of the electrochemical intercalation of PTCDA, with electrochemical (red) and con-current electrical transport (black) measurements. Inset depicts the optical microscopic image of the device, scale bar is 5 μm. (B) Cross-section STEM-HAADF image of a MoS2 device after PTCDA intercalation. Reproduced with permission[32]. Copyright 2020, Springer. (color on line)
Figure 9
Summary of CV and ETS results for γ and β phases NiOOH for various dopants. (A) The expected structures and oxidation states of γ phase intermediates. (B) The OER catalytic performance (CV) of α phase samples. (C) Corresponding in situ sheet conductance (ETS) of the various electrocatalysts in (B). “α*” in (B) denotes pre-oxidation with CV cycles to achieve α-hydroxide formation on the surface. “α△” denotes α-Ni0.9Fe0.1 sample prepared through ion-exchange. (D) Summary of in situ conductivity and OER activity of α and β (inset) phases Ni0.9M0.1OOH. (E) Summary of in situ conductivity and Tafel slopes of α and β (inset) phases Ni0.9M0.1OOH. Reproduced with permission[34]. Copyright 2021, John Wiley and Sons. (color on line)
Figure 10
(A) Typical CV (black) and ETS (red) curves of the monolayer Bi2WO6 device in 0.5 mol·L-1 CO2-saturated KHCO3. (B) dETS result of (A). (C) Schematic illustration of the surface phase transition in monolayer Bi2WO6 with reducing potentials. Reproduced with permission[41]. Copyright 2021, American Chemical Society. (color on line)
Figure 11
(A) Typical electrochemical (y axis in black) and electronic (y axis in red) signals of single-layer WS2 during HER at different bias potentials. (B) Schematic of the surface conductance of the semiconductor electrocatalyst. (C and D) Schematic of the effect of surface conductance on an n-type semiconductor catalyst for a cathodic reaction (C) and an anodic reaction (D). (E) Sche-matic of the correlation between the types of semiconductor and their preferred electrocatalytic activities. Reproduced with permission[47]. Copyright 2019, Nature Publishing Group. (color on line)
Figure 12
(A) Representative ISD-VSD curves of living MR-1 at different gate voltages. (B) Schematic illustration of the interface ele-ctrochemistry model for the electrical conducting current in a typical electrode pair measurement. The transport current is determined by the vertical electron transfer (electrochemical/faradaic current) at the bacteria/electrode interfaces, whereas lateral (non-faradaic) electron transport pathway across the biofilm does not exist. Ionic transport (current) toward the electrodes in the lateral direction forms a complete electrochemical circuit. (C and D) ISD-VSD curves of living Shewanella biofilms with different pair electrode distances (C) and different electrode areas (D). Inset in (C) shows schematic illustration of the biofilm measurements using two sets of pair electrodes with either varying gaps (with fixed areas) or varying electrode areas (with fixed gaps). Reproduced with permission[51]. Copyright 2016, American Chemical Society. (color on line)
[1] | Motobayashi K, Osawa M. Recent advances in spectroscopic investigations on ionic liquid/electrode interfaces[J]. Curr. Opin. Electrochem., 2018, 8:147-155. |
[2] |
Zhu Y P, Wang J L, Chu H, Chu Y C, Chen H M. In situ/operando studies for designing next-generation electrocatalysts[J]. ACS Energy Lett., 2020, 5(4):1281-1291.
doi: 10.1021/acsenergylett.0c00305 URL |
[3] |
Deng Y L, Yeo B S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy[J]. ACS Catal., 2017, 7(11):7873-7889.
doi: 10.1021/acscatal.7b02561 URL |
[4] |
Timoshenko J, Cuenya B R. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy[J]. Chem. Rev., 2021, 121(2):882-961.
doi: 10.1021/acs.chemrev.0c00396 URL |
[5] |
Yang K L, Kas R, Smith W A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction[J]. J. Am. Chem. Soc., 2019, 141(40):15891-15900.
doi: 10.1021/jacs.9b07000 URL |
[6] |
Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015[J]. Chem. Rev., 2016, 116(22):13234-13278.
pmid: 27736057 |
[7] |
Hui F, Lanza M. Scanning probe microscopy for advanced nanoelectronics[J]. Nat. Electron., 2019, 2(6):221-229.
doi: 10.1038/s41928-019-0264-8 URL |
[8] |
Meddings N, Heinrich M, Overney F, Lee J S, Ruiz V, Napolitano E, Seitz S, Hinds G, Raccichini R, Gabers M, Park J. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review[J]. J. Power Sources, 2020, 480:228742.
doi: 10.1016/j.jpowsour.2020.228742 URL |
[9] | Pajkossy T, Jurczakowski R. Electrochemical impedance spectroscopy in interfacial studies[J]. Curr. Opin. Electro-chem., 2017, 1(1):53-58. |
[10] |
Ding M N, He Q Y, Wang G M, Cheng H C, Huang Y, Duan X F. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces[J]. Nat. Commun., 2015, 6:7867.
doi: 10.1038/ncomms8867 URL |
[11] |
Ding M N, Liu Y, Wang G M, Zhan Z P, Yin A X, He Q Y, Huang Y, Duan X F. Highly sensitive chemical detection with tunable sensitivity and selectivity from ultrathin platinum nanowires[J]. Small, 2017, 13(5):1602969.
doi: 10.1002/smll.201602969 URL |
[12] |
Yang F, Donavan K C, Kung S C, Penner R M. The surface scattering-based detection of hydrogen in air using a platinum nanowire[J]. Nano Lett., 2012, 12(6):2924-2930.
doi: 10.1021/nl300602m pmid: 22524464 |
[13] |
Sondheimer E H. The mean free path of electrons in metals[J]. Adv. Phys., 2001, 50(6):499-537.
doi: 10.1080/00018730110102187 URL |
[14] |
Climent V, Feliu J M. Thirty years of platinum single crystal electrochemistry[J]. J. Solid State Electrochem., 2011, 15(7-8):1297-1315.
doi: 10.1007/s10008-011-1372-1 URL |
[15] |
Wang P T, Zhang X, Zhang J, Wan S, Guo S J, Lu G, Yao J L, Huang X Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis[J]. Nat. Commun., 2017, 8:14580.
doi: 10.1038/ncomms14580 URL |
[16] |
Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials[J]. ACS Catal., 2012, 2(8):1765-1772.
doi: 10.1021/cs3003098 URL |
[17] |
Fukuzumi S, Yamada Y, Karlin K D. Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell[J]. Electrochim. Acta, 2012, 82:493-511.
doi: 10.1016/j.electacta.2012.03.132 URL |
[18] |
Chang X, Batchelor-McAuley C, Compton R G. Hydrogen peroxide reduction on single platinum nanoparticles[J]. Chem. Sci., 2020, 11(17):4416-4421.
doi: 10.1039/d0sc00379d pmid: 34122898 |
[19] |
Ali A, Shen P K. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction[J]. J. Mater. Chem. A, 2019, 7(39):22189-22217.
doi: 10.1039/C9TA06088J URL |
[20] |
Ferre-Vilaplana A, Perales-Rondón J V, Feliu J M, Herrero E. Understanding the effect of the adatoms in the formic acid oxidation mechanism on Pt(111) electrodes[J]. ACS Catal., 2014, 5(2):645-654.
doi: 10.1021/cs501729j URL |
[21] |
Banerjee S, Zhang Z Q, Hall A S, Thoi V S. Surfactant perturbation of cation interactions at the electrode-electrolyte interface in carbon dioxide reduction[J]. ACS Catal., 2020, 10(17):9907-9914.
doi: 10.1021/acscatal.0c02387 URL |
[22] |
Cho M, Song J T, Back S, Jung Y, Oh J. The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction[J]. ACS Catal., 2018, 8(2):1178-1185.
doi: 10.1021/acscatal.7b03449 URL |
[23] |
Huang J E, Li F W, Ozden A, Rasouli A S, de Arquer F P G, Liu S J, Zhang S Z, Luo M C, Wang X, Lum Y W, Xu Y, Bertens K, Miao R K, Dinh C T, Sinton D, Sargent E H. CO2 electrolysis to multicarbon products in strong acid[J]. Science, 2021, 372(6546):1074-1078.
doi: 10.1126/science.abg6582 URL |
[24] |
Dubouis N, Serva A, Berthin R, Jeanmairet G, Porcheron B, Salager E, Salanne M, Grimaud A. Tuning water reduction through controlled nanoconfinement within an organic liquid matrix[J]. Nat. Catal., 2020, 3(8):656-663.
doi: 10.1038/s41929-020-0482-5 URL |
[25] |
Ding M, Zhong G Y, Zhao Z P, Huang Z H, Li M F, Shiu H Y, Liu Y, Shakir I, Huang Y, Duan X F. On-chip in situ monitoring of competitive interfacial anionic chemi-sorption as a descriptor for oxygen reduction kinetics[J]. ACS Cent. Sci., 2018, 4(5):590-599.
doi: 10.1021/acscentsci.8b00082 URL |
[26] |
Mu Z Y, Yang M, He W, Pan Y H, Zhang P K, Li X F, Wu X J, Ding M N. On-chip electrical transport investigation of metal nanoparticles: Characteristic acidic and alkaline adsorptions revealed on Pt and Au surface[J]. J. Phys. Chem. Lett., 2020, 11(14):5798-5806.
doi: 10.1021/acs.jpclett.0c01282 URL |
[27] |
Valter M, Busch M, Wickman B, Grönbeck H, Baltrusaitis J, Hellman A. Electrooxidation of glycerol on gold in acidic medium: A combined experimental and DFT study[J]. J. Phys. Chem. C, 2018, 122(19):10489-10494.
doi: 10.1021/acs.jpcc.8b02685 URL |
[28] |
Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F. Van der Waals heterostructures and devices[J]. Nat. Rev. Mater., 2016, 1(9):16042.
doi: 10.1038/natrevmats.2016.42 URL |
[29] |
Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748):323-333.
doi: 10.1038/s41586-019-1013-x URL |
[30] |
He Q Y, Lin Z Y, Ding M N, Yin A X, Halim U, Wang C, Liu Y, Cheng H C, Huang Y, Duan X F. In situ probing molecular intercalation in two-dimensional layered semiconductors[J]. Nano Lett., 2019, 19(10), 6819-6826.
doi: 10.1021/acs.nanolett.9b01898 URL |
[31] |
Zhang J S, Yang A K, Wu X, van de Groep J, Tang P Z, Liu S R, Liu B F, Shi F F, Wan J Y, Li Q T, Sun Y M, Lu Z Y, Zheng X L, Zhou G M, Wu C L, Zhang S C, Brongersma M L, Li J, Cui Y. Reversible and selective ion intercalation through the top surface of few-layer MoS2[J]. Nat. Commun., 2018, 9:5289.
doi: 10.1038/s41467-018-07710-z URL |
[32] |
He W, Zang H, Cai S H, Mu Z Y, Liu C, Ding M N, Wang P, Wang X R. Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules[J]. Nano Res., 2020, 13(11):2917-2924.
doi: 10.1007/s12274-020-2948-9 URL |
[33] |
Yu X Y, Feng Y, Guan B Y, Lou X W, Paik U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction[J]. Energy Environ. Sci., 2016, 9(4):1246-1250.
doi: 10.1039/C6EE00100A URL |
[34] | Tian B L, Shin H, Liu S T, Fei M C, Mu Z Y, Liu C, Pan Y H, Sun Y M, Goddard W A, Ding M N. Double exchange induced in situ conductivity in nickel based oxyhydroxides: An effective descriptor for electrocatalytic oxygen evolution[J]. Angew.Chem. Int. Ed., 2021, 60(30):16448-16456. |
[35] |
Bediako D K, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra V K, Nocera D G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst[J]. J. Am. Chem. Soc., 2012, 134(15):6801-6809.
doi: 10.1021/ja301018q URL |
[36] |
de Gennes P G. Effects of double exchange in magnetic crystals[J]. Phys. Rev., 1960, 118(1):141-154.
doi: 10.1103/PhysRev.118.141 URL |
[37] |
Nitopi S, Bertheussen E, Scott S B, Liu X Y, Engstfeld A K, Horch S, Seger B, Stephens I E L, Chan K, Hahn C, Nørskov J K, Jaramillo T F, Chorkendorff I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chem. Rev., 2019, 119(12):7610-7672.
doi: 10.1021/acs.chemrev.8b00705 URL |
[38] |
Cao C S, Ma D D, Gu J F, Xie X Y, Zeng G, Li X F, Han S G, Zhu Q L, Wu X T, Xu Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J]. Angew. Chem. Int. Ed., 2020, 59(35):15014-15020.
doi: 10.1002/anie.202005577 URL |
[39] |
Yang H, Han N, Deng J, Wu J H, Wang Y, Hu Y P, Ding P, Li Y F, Li Y G, Lu J. Selective CO2 reduction on 2D mesoporous Bi nanosheets[J]. Adv. Energy Mater., 2018, 8(35):1801536.
doi: 10.1002/aenm.201801536 URL |
[40] |
Zhou Y, Liu S T, Gu Y M, Wen G H, Ma J, Zuo J L, Ding M N. In(III) metal-organic framework incorporated with enzyme-mimicking nickel bis(dithiolene) ligand for highly selective CO2 electroreduction[J]. J. Am. Chem. Soc., 2021, 143(35):14071-14076.
doi: 10.1021/jacs.1c06797 URL |
[41] |
Liu S T, Wang C, Wu J H, Tian B L, Sun Y M, Lv Y, Mu Z Y, Sun Y X, Li X S, Wang F Y, Wang Y Q, Tang L Y, Wang P, Li Y F, Ding M N. Efficient CO2 electroreduction with a monolayer Bi2WO6 through a metallic intermediate surface state[J]. ACS Catal., 2021, 11(20):12476-12484.
doi: 10.1021/acscatal.1c02495 URL |
[42] |
Chen W, Xie C, Wang Y Y, Zou Y Q, Dong C L, Huang Y C, Xiao Z H, Wei Z X, Du S Q, Chen C, Zhou B, Ma J M, Wang S Y. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation[J]. Chem, 2020, 6(11):2974-2993.
doi: 10.1016/j.chempr.2020.07.022 URL |
[43] |
Wang H Y, Hung S F, Chen H Y, Chan T S, Chen H M, Liu B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4[J]. J. Am. Chem. Soc., 2016, 138(1):36-39.
doi: 10.1021/jacs.5b10525 URL |
[44] |
Gerischer H. Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems of catalysis[J]. Surf. Sci., 1969, 18(1):97-122.
doi: 10.1016/0039-6028(69)90269-6 URL |
[45] |
Bisri S Z, Shimizu S, Nakano M, Iwasa Y. Endeavor of iontronics: From fundamentals to applications of ion-con-trolled electronics[J]. Adv. Mater., 2017, 29(25):1607054.
doi: 10.1002/adma.201607054 URL |
[46] |
Marcus R A. On the theory of oxidation-reduction reactions involving electron transfer. I[J]. J. Chem. Phys., 2004, 26(4):867-871.
doi: 10.1063/1.1743423 URL |
[47] |
He Y M, He Q Y, Wang L Q, Zhu C, Golani P, Handoko A D, Yu X C, Gao C T, Ding M N, Wang X W, Liu F C, Zeng Q S, Yu P, Guo S S, Yakobson B I, Wang L, Seh Z W, Zhang Z H, Wu M H, Wang Q J, Zhang H, Liu Z. Self-gating in semiconductor electrocatalysis[J]. Nat. Mater., 2019, 18(10):1098-1104.
doi: 10.1038/s41563-019-0426-0 URL |
[48] |
Nealson K H, Saffarini D. Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation[J]. Annu. Rev. Microbiol., 1994, 48:311-343.
pmid: 7826009 |
[49] |
Fredrickson J K, Romine M F, Beliaev A S, Auchtung J M, Driscoll M E, Gardner T S, Nealson K H, Osterman A L, Pinchuk G, Reed J L, Rodionov D A, Rodrigues J L M, Saffarini D A, Serres M H, Spormann A M, Zhulin I B, Tiedje J M. Towards environmental systems biology of Shewanella[J]. Nat. Rev. Microbiol., 2008, 6(8):592-603.
doi: 10.1038/nrmicro1947 pmid: 18604222 |
[50] |
Rabaey K, Rozendal R A. Microbial electrosynjournal-revisiting the electrical route for microbial production[J]. Nat. Rev. Microbiol., 2010, 8(10):706-716.
doi: 10.1038/nrmicro2422 URL |
[51] |
Ding M N, Shiu H Y, Li S L, Lee C K, Wang G M, Wu H, Weiss N O, Young T D, Weiss P S, Wong G C L, Nealson K H, Huang Y, Duan X F. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter[J]. ACS Nano, 2016, 10(11):9919-9926.
doi: 10.1021/acsnano.6b03655 URL |
[52] |
Gao D F, Soholten F, Cuenya B R. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect[J]. ACS Catal., 2017, 7(8):5112-5120.
doi: 10.1021/acscatal.7b01416 URL |
[53] | Wahab O J, Kang M, Unwi P R. Scanning electrochemical cell microscopy: A natural technique for single entity electrochemistry[J]. Curr. Opin. Electrochem., 2020, 22:120-128. |
[54] |
Zhang J, Wu J J, Guo H, Chen W B, Yuan J T, Martinez U, Gupta G, Mohite A, Ajayan P M, Lou J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2[J]. Adv. Mater., 2017, 29(42):1701955.
doi: 10.1002/adma.201701955 URL |
[55] |
Inkpen M S, Liu Z F, Li H X, Campos L M, Neaton J B, Venkataraman L. Non-chemisorbed gold-sulfur binding prevails in self-assembled monolayers[J]. Nat. Chem., 2019, 11(4):351-358.
doi: 10.1038/s41557-019-0216-y URL |
[56] |
Gongding J J. Single entity electrochemistry progresses to cell counting[J]. Angew. Chem. Int. Ed., 2016, 55(42):12956-12958.
doi: 10.1002/anie.201606459 URL |
[57] |
Liu C, Gallagher J J, Sakimoto K K, Nichols E M, Chang C J, Chang M C Y, Yang P D. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Lett., 2015, 15(5):3634-3639.
doi: 10.1021/acs.nanolett.5b01254 URL |
[58] | Nevin K P, Woodard T L, Franks A E, Summers Z M, Lovley D R. Microbial electrosynjournal: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. 2010, mBio, 1(2):e00103-10. |
[59] |
Tian B Z, Lieber C M. Nanowired bioelectric interfaces[J]. Chem. Rev., 2019, 119(15):9136-9152.
doi: 10.1021/acs.chemrev.8b00795 URL |
[60] |
Patolsky F, Zheng G F, Lieber C M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species[J]. Nat. Protoc., 2006, 1(4):1711-1724.
doi: 10.1038/nprot.2006.227 URL |
[61] |
Tian B Z, Liu J, Dvir T, Jin L H, Tsui J H, Qing Q, Suo Z G, Langer R, Kohane D S, Lieber C M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues[J]. Nat. Mater., 2012, 11(11):986-994.
doi: 10.1038/nmat3404 URL |
[62] |
Patolsky F, Timko B P, Yu G H, Fang Y, Greytak A B, Zheng G F, Lieber C M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays[J]. Science, 2006, 313(5790):1100-1104.
doi: 10.1126/science.1128640 URL |
[63] |
Li T X, Liang Y Q, Li J H, Yu Y, Xiao M M, Ni W, Zhang Z Y, Zhang G J. Carbon nanotube field-effect transistor biosensor for ultrasensitive and label-free detection of breast cancer exosomal miRNA21[J]. Anal. Chem., 2021, 93(46):15501-15507.
doi: 10.1021/acs.analchem.1c03573 URL |
[64] |
Tian B Z, Cohen-Karni T, Qing Q, Duan X J, Xie P, Lieber C M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes[J]. Science, 2010, 329(5993):830-834.
doi: 10.1126/science.1192033 URL |
[65] |
Jenkins E P W, Finch A, Gerigk M, Triantis I F, Watts C, Malliaras G G. Electrotherapies for glioblastoma[J]. Adv. Sci., 2021, 8(18):2100978.
doi: 10.1002/advs.202100978 URL |
[66] |
Yu R J, Ying Y L, Gao R, Long Y T. Confined nanopipette sensing: From single molecules, single nanoparticles, to single cells[J]. Angew. Chem. Int. Ed., 2019, 58(12):3706-3714.
doi: 10.1002/anie.201803229 URL |
[1] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
[2] | 李明雪, 史 杭, 刘 佳, 张 檬, 周剑章, 吴德印, 田中群. 金电极上偶氮腺嘌呤的电化学行为研究[J]. 电化学(中英文), 2019, 25(6): 651-659. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||