[1] Chatterjee A, Foord J S. Biological applications of diamond electrodes: electrochemical studies of riboflavin[J]. Diamond and Related Materials, 2009, 18(5-8): 899-903.
[2] Massey V. The chemical and biological versatility of riboflavin[J], Biochemical Society Transactions, 2000, 28(4): 283-296.
[3] Sikorska E, Gliszczynska-Swig?o A, Insinska-Rak M, et al. Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods[J]. Analytica Chimica Acta, 2008, 613(2): 207-217.
[4] Qi H L, Cao Z Z, Hou L N. Electrogenerated chemiluminesence method for the determination of riboflavin at an ionic liquid modified gold electrode[J]. Spectrochimica Acta Part A,2011, 78, (1): 211-215.
[5] Lavanya N, Radhakrishnan S, Sekar C, et al. Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals[J]. Analyst, 2013, 138(7): 2061-2067.
[6] Sá é S, Silva P S , Jost C L, et al. Electrochemical sensor based on bismuth-film electrode for voltammetric studies on vitamin B2 (riboflavin)[J]. Sensors and Actuators B: Chemical, 2015, 209(1): 423-430.
[7] Wang Y, Zhuang Q F, Ni Y N. Fabrication of riboflavin electrochemical sensor based on homoadenine single-stranded DNA/molybdenum disulfide–graphene nanocomposite modified gold electrode[J]. Journal of Electroanalytical Chemistry, 2015, 736(1): 47-54.
[8] Zhang H, Zhao J S, Liu H T, et al. Application of poly (3-methylthiophene) modified glassy carbon electrode as riboflavin sensor[J]. International Journal of Electrochemical Science, 2010, 5: 295-301.
[9] Ahirwal G K, Mitra C K. Gold nanoparticles based sandwich electrochemical immunosensor[J]. Biosensors and Bioelectronics, 2010, 25(9): 2016-2020.
[10] Mani V, Dinesh B, Chen S M, et al. Direct electrochemistry of myoglobin at reduced graphene oxide-multiwalled carbon nanotubes-platinum nanoparticles nanocomposite and biosensing towards hydrogen peroxide and nitrite[J]. Biosensors and Bioelectronics, 2014, 53: 420-427.
[11] Lin L S, Cong Z X, Cao J B, et al. Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy[J]. ACS Nano, 2014, 8(4): 3876-3883.
[12] Loget G, Wood J B, Cho K, et al. Electrodeposition of polydopamine thin films for DNA patterning and microarrays[J]. Analytical Chemistry, 2013, 85(21): 9991-9995.
[13] Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature, 1994, 372(6502): 159-162.
[14] Siebrands T, Giersig M, Mulvaney P, et al. Steric exclusion chromatography of nanometer-sized gold particles[J]. Langmuir, 1993, 9(9): 2297-2300.
[15] Zhang M, He X W, Chen L X, et al. Preparation of IDA-Cu functionalized core–satellite Fe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion of abundant protein in bovine blood[J]. Journal of Materials Chemistry, 2010, 47(20): 10696-10704.
[16] Wang T, Hu X G, Qu X H, et al. Noncovalent functionalization of multiwalled carbon nanotubes: Application in hybrid Nanostructures[ J]. Journal of Physical Chemistry B, 2006, 110(13): 6613-6636. |