[1] |
Ataf A A, Adnan S, Zarif G, Nasir R, Amin B, Bhajan L, Ezzat K. A review on the medicinal importance of Pyridine Derivatives[J]. J. Drug Des. Med. Chem., 2015, 1(1): 1-11.
|
[2] |
Nakao Y, Yada A, Satoh J, Ebata S, Oda S, Hiyama T. Arylcyanation of norbornene and norbornadiene catalyzed by nickel[J]. Chem. Lett., 2006, 35(7): 790-791.
|
[3] |
McNally A, Prier C K, MacMillan D W C. Discovery of an α-amino C-H arylation reaction using the strategy of accelerated serendipity[J]. Science, 2011, 334(6059): 1114-1117.
doi: 10.1126/science.1213920
pmid: 22116882
|
[4] |
Pirnot M T, Rankic D A, Martin D B C, MacMillan D W C. Photoredox activation for the direct β-arylation of ketones and aldehydes[J]. Science, 2013, 339(6127): 1593-1596.
doi: 10.1126/science.1232993
pmid: 23539600
|
[5] |
Qvortrup K, Rankic D A, MacMillan D W C. A general strategy for organocatalytic activation of C-H bonds via photoredox catalysis: Direct arylation of benzylic ethers[J]. J. Am. Chem. Soc., 2014, 136(2): 626-629.
doi: 10.1021/ja411596q
pmid: 24341523
|
[6] |
Cuthbertson J D, MacMillan D W C. The direct arylation of allylic sp3 C-H bonds via organic and photoredox catalysis[J]. Nature, 2015, 519(7541): 74-77.
|
[7] |
Lipp B, Lipp A, Detert H, Opatz T. Light-induced alkylation of (hetero)aromatic nitriles in a transition-metal-free C-C-bond metathesis[J]. Org. Lett., 2017, 19(8): 2054-2057.
doi: 10.1021/acs.orglett.7b00652
pmid: 28388085
|
[8] |
Lima F, Kabeshov M A, Tran D N, Battilocchio C, Sedelmeier J, Sedelmeier G, Schenkel B, Ley S V. Visible light activation of boronic esters enables efficient photoredox C(sp2)-C(sp3) cross-couplings in flow[J]. Angew. Chem. Int. Ed., 2016, 55(45): 14085-14089.
|
[9] |
Lipp B, Nauth A M, Opatz T. Transition-metal-free decarboxylative photoredox coupling of carboxylic acids and alcohols with aromatic nitriles[J]. Org. Chem., 2016, 81(15): 6875-6882.
|
[10] |
Gao L Z, Wang G Q, Cao J, Chen H, Gu Y M, Liu X T, Cheng X, Ma J, Li S H. Lewis acid-catalyzed selective reductive decarboxylative pyridylation of N-hydroxyphthalimide esters: Synthesis of congested pyridine-substituted quaternary carbons[J]. ACS Catal., 2019, 9(11): 10142-10151.
|
[11] |
Shi J L, Yuan T, Zheng M F, Wang X C. Metal-free heterogeneous semiconductor for visible-light photocatalytic decarboxylation of carboxylic acids[J]. ACS Catal., 2021, 11(5): 3040-3047.
|
[12] |
Wang G Q, Cao J, Gao L Z, Chen W X, Huang W H, Cheng X, Li S H. Metal-free synthesis of C-4 substituted pyridine derivatives using pyridine-boryl radicals via a radical addition/coupling mechanism: A combined computational and experimental study[J]. J. Am. Chem. Soc., 2017, 139(10): 3904-3910.
doi: 10.1021/jacs.7b00823
pmid: 28212014
|
[13] |
Zhang X, Yang C, Gao H, Wang L, Guo L, Xia W J. Reductive arylation of aliphatic and aromatic aldehydes with cyanoarenes by electrolysis for the synthesis of alcohols[J]. Org. Lett., 2021, 23(9): 3472-3476.
doi: 10.1021/acs.orglett.1c00920
pmid: 33861088
|
[14] |
Ding W J, Sheng J, Li J, Cheng X. Electroreductive 4-pyridylation of unsaturated compounds using gaseous ammonia as a hydrogen source[J]. Org. Chem. Front, 2022, 9(10): 2634-2639.
|
[15] |
Cao J, Wang G Q, Gao L Z, Chen H, Liu X T, Cheng X, Li S H. Perfluoroalkylative pyridylation of alkenes via 4-cyanopyridine-boryl radicals[J]. Chem. Sci., 2019, 10(9): 2767-2772.
|
[16] |
Chen J, Zhu S Q, Qin J, Chu L L. Intermolecular, redox-neutral azidoarylation of alkenes via photoredox catalysis[J]. Chem. Commun., 2019, 55(16): 2336-2339.
|
[17] |
Lipp B, Kammer L M, Kücükdisli M, Luque A, Kühlborn J, Pusch S, Matuleviciute G, Schollmeyer D, Sackus A, Opatz T. Visible light-induced sulfonylation/arylation of styrenes in a double radical three-component photoredox reaction[J]. Chem. Eur. J., 2019, 25(38): 8965-8969.
|
[18] |
Zhu S Q, Qin J, Wang F, Li H, Chu L L. Photoredox-catalyzed branch-selective pyridylation of alkenes for the expedient synthesis of Triprolidine[J]. Nat. Commun., 2019, 10: 749.
doi: 10.1038/s41467-019-08669-1
pmid: 30765695
|
[19] |
Betori R C, Scheidt K A. Reductive arylation of arylidene malonates using photoredox catalysis (Retracted Article)[J]. ACS Catal., 2019, 9(11): 10350-10357.
doi: 10.1021/acscatal.9b03608
|
[20] |
Qi J, Zhang F L, Jin J K, Zhao Q, Li B, Liu L X, Wang Y F. New radical borylation pathways for organoboron synthesis enabled by photoredox catalysis[J]. Angew. Chem. Int. Ed., 2020, 59(31): 12876-12884.
doi: 10.1002/anie.201915619
pmid: 32232933
|
[21] |
Zhang S, Li L J, Li X R, Zhang J Q, Xu K, Li G G, Findlater M. Electroreductive 4-pyridylation of electron-deficient alkenes with assistance of ni(acac)2[J]. Org. Lett., 2020, 22(9): 3570-3575.
doi: 10.1021/acs.orglett.0c01014
pmid: 32255638
|
[22] |
Li Y J, Han C J, Wang Y Y, Huang X, Zhao X W, Qiao B K, Jiang Z Y. Catalytic asymmetric reductive azaarylation of olefins via enantioselective radical coupling[J]. J. Am. Chem. Soc., 2022, 144(17): 7805-7814.
|
[23] |
Miao M, Liao L L, Cao G M, Zhou W J, Yu D G. Visible-light-mediated external-reductant-free reductive cross coupling of benzylammonium salts with (hetero)aryl nitriles[J]. Sci. Chin. Chem., 2019, 62(11): 1519-1524.
|
[24] |
Lehnherr D, Lam Y H, Nicastri M C, Liu J C, Newman J A, Regalado E L, DiRocco D A, Rovis T. Electrochemical synthesis of hindered primary and secondary amines via proton-coupled electron transfer[J]. J. Am. Chem. Soc., 2020, 142(1): 468-478.
doi: 10.1021/jacs.9b10870
pmid: 31849221
|
[25] |
Wen J W, Yang X T, Yan K L, Qin H Y, Ma J, Sun X J, Yang J J, Wang H. Electroreductive C3 pyridylation of quinoxalin-2(1H)-ones: An effective way to access bidentate nitrogen ligands[J]. Org. Lett., 2021, 23(3): 1081-1085.
|
[26] |
Jahn U. Radicals in transition metal catalyzed reactions? Transition metal catalyzed radical reactions? A fruitful interplay anyway[J]. Top. Curr. Chem., 2011, 320, 323-451.
|
[27] |
Twilton J, Le C, Zhang P, Shaw M H, Evans R W, MacMillan D W C. The merger of transition metal and photocatalysis[J]. Nat. Rev. Chem., 2017, 1(7): 0052.
|
[28] |
Lu J Q, Wang Y K, McCallum T, Fu N K. Harnessing radical chemistry via electrochemical transition metal catalysis[J]. iScience, 2020, 23(12): 101796.
|
[29] |
Cheng X, Lei A W, Mei T S, Xu H C, Xu K, Zeng C C. Recent applications of homogeneous catalysis in electrochemical organic synthesis[J]. CCS Chem., 2022, 4: 1120-1152.
|
[30] |
Ma C, Fang P, Liu Z R, Xu S S, Xu K, Cheng X, Lei A W, Xu H C, Zeng C C, Mei T S. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts[J]. Sci. Bull., 2021, 66(23): 2412-2429.
doi: 10.1016/j.scib.2021.07.011
pmid: 36654127
|
[31] |
Zhang W, Wang F, McCann S D, Wang D H, Chen P H, Stahl S S, Liu G S. Enantioselective cyanation of benzylic C-H bonds via copper-catalyzed radical relay[J]. Science, 2016, 353(6303): 1014-1018.
pmid: 27701109
|
[32] |
Ge L, Zhou H, Chiou M F, Jiang H M, Jian W J, Ye C Q, Li X Y, Zhu X T, Xiong H G, Li Y J, Song L J, Zhang X H, Bao H L. Iron-catalysed asymmetric carboazidation of styrenes[J]. Nat. Catal., 2021, 4(1): 28-35.
|
[33] |
Zhang C, Li Z L, Gu Q S, Liu X Y. Catalytic enantioselective C(sp3)-H functionalization involving radical intermediates[J]. Nat. Commun., 2021, 12(1): 475.
doi: 10.1038/s41467-020-20770-4
pmid: 33473126
|
[34] |
Zhou Q, Chin M, Fu Y, Liu P, Yang Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450[J]. Science, 2021, 374(6575): 1612-1616.
doi: 10.1126/science.abk1603
pmid: 34941416
|
[35] |
Ding W J, Li M F, Fan J K, Cheng X. Palladium-catalyzed asymmetric allylic 4-pyridinylation via electroreductive substitution reaction[J]. Nat. Commun., 2022, 13(1): 5642-5652.
doi: 10.1038/s41467-022-33452-0
pmid: 36163325
|
[36] |
Pitzer L, Schwarz J L, Glorius F. Reductive radical-polar crossover: Traditional electrophiles in modern radical reactions[J]. Chem. Sci., 2019, 10(36): 8285-8291.
doi: 10.1039/c9sc03359a
pmid: 32055300
|
[37] |
Wiles R J, Molander G A. Photoredox-mediated net-neutral radical/polar crossover reactions[J]. Isr. J. Chem., 2020, 60(3-4): 281-293.
doi: 10.1002/ijch.201900166
pmid: 33986554
|
[38] |
Sharma S, Singh J, Sharma A. Visible light assisted radical-polar/polar-radical crossover reactions in organic synthesis[J]. Adv. Synth. Catal., 2021, 363(13): 3146-3169.
|
[39] |
Jiao K J, Li Z M, Xu X T, Zhang L P, Li Y Q, Zhang K, Mei T S. Palladium-catalyzed reductive electrocarboxylation of allyl esters with carbon dioxide[J]. Org. Chem. Front., 2018, 5(14): 2244-2248.
|
[40] |
Zhang H H, Zhao J J, Yu S Y. Enantioselective allylic alkylation with 4-alkyl-1,4-dihydropyridines enabled by photoredox/palladium cocatalysis[J]. J. Am. Chem. Soc., 2018, 140(49): 16914-16919.
|
[41] |
Zhang H H, Zhao J J, Yu S Y. Enantioselective α-allylation of anilines enabled by a combined palladium and photoredox catalytic system[J]. ACS Catal., 2020, 10(8): 4710-4716.
|
[42] |
Zhang H H, Tang M H, Zhao J J, Song C H, Yu S Y. Enantioselective reductive homocoupling of allylic acetates enabled by dual photoredox/palladium catalysis: Access to C2-symmetrical 1,5-dienes[J]. J. Am. Chem. Soc., 2021, 143(32): 12836-12846.
|