电化学(中英文) ›› 2024, Vol. 30 ›› Issue (5): 2313005. doi: 10.61558/2993-074X.3442
• 综述 • 上一篇
收稿日期:
2023-10-29
接受日期:
2024-01-05
出版日期:
2024-05-28
发布日期:
2024-01-15
Peng-Fei Li, Guang-Sheng Kou, Li-Ping Qi*(), You-Ai Qiu*()
Received:
2023-10-29
Accepted:
2024-01-05
Published:
2024-05-28
Online:
2024-01-15
Contact:
*Li-Ping Qi, Tel: (86-22)23503627, E-mail address: qiliping@nankai.edu.cn;*You-Ai Qiu, Tel: (86)17502215086, E-mail address: qiuyouai@nankai.edu.cn
摘要:
近年来,含有氘原子的化合物在包括材料和生物医药在内的各个领域中的重要性日益增加,被广泛应用于化学和生物学的机制研究中,将氘原子引入有机化合物已经成为药物分子发展的重要方向之一。同时,在非生物活性物质的活体内氚标记的化合物也发挥了重要作用。自美国食品药品监督管理局(FDA)批准的第一种用于临床治疗的氘化药物问世以来,氘标记的化合物就迅速成为人们关注的焦点,各种有机化合物的氘化方法被广泛开发。其中,卤化物的还原氘化具有高选择性的优势,但是大部分反应策略受到氘源和催化模式的限制。有机电合成作为一种相对绿色的催化模式以及其对氧化还原反应的广泛适应性,电化学卤化物的还原氘化成为替代传统卤-氘原子交换的重要方法之一,它避免了传统方法中过渡金属催化剂、金属试剂及昂贵氘代试剂的使用。近年来卤化物的电化学脱卤氘化得到很快的的发展,电化学脱卤氘化通常仅需要重水作为最廉价易得的氘源就能高效得到高氘代掺入率的产物,这为氘代化合物的合成与发展提供了重要的支撑。本文根据卤化物的类型,综述了电化学条件下芳基卤化物和烷基卤化物还原氘化的最新进展以及其反应机制,有望为未来更为广泛的氘代方法研究以及氘代化合物的研究提供一定的基础.
李鹏飞, 寇广生, 亓丽萍, 仇友爱. 电化学脱卤氘化研究进展[J]. 电化学(中英文), 2024, 30(5): 2313005.
Peng-Fei Li, Guang-Sheng Kou, Li-Ping Qi, You-Ai Qiu. Recent Advance in Electrochemical Dehalogenative Deuteration[J]. Journal of Electrochemistry, 2024, 30(5): 2313005.
[1] | O’Ferrall R A M. A pictorial representation of zero-point energy and tunnelling contributions to primary hydrogen isotope effects[J]. J. Phys. Org. Chem., 2010, 23(7): 572-579. |
[2] |
Pirali T, Serafini M, Cargnin S, Genazzani A A. Applications of deuterium in medicinal chemistry[J]. J. Med. Chem., 2019, 62(11): 5276-5297.
doi: 10.1021/acs.jmedchem.8b01808 pmid: 30640460 |
[3] |
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent developments for the deuterium and tritium labeling of organic molecules[J]. Chem. Rev., 2022, 122(6): 6634-6718.
doi: 10.1021/acs.chemrev.1c00795 pmid: 35179363 |
[4] |
Schmidt C. First deuterated drug approved[J]. Nat. Biotechnol., 2017, 35: 493-494.
doi: 10.1038/nbt0617-493 pmid: 28591114 |
[5] |
Isin E M, Elmore C S, Nilsson G N, Thompson R A, Weidolf L. Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies[J]. Chem. Res. Toxicol., 2012, 25(3): 532-542.
doi: 10.1021/tx2005212 pmid: 22372867 |
[6] |
Mullard A. Deuterated drugs draw heavier backing[J]. Nat. Rev. Drug Discov., 2016, 15: 219-221.
doi: 10.1038/nrd.2016.63 pmid: 27032821 |
[7] | Wiberg K B. The deuterium isotope effect[J]. Chem. Rev., 1955, 55: 713-743. |
[8] |
Gómez-Gallego M, Sierra M A. Kinetic isotope effects in the study of organometallic reaction mechanisms[J]. Chem. Rev., 2011, 111(8): 4857-4963.
doi: 10.1021/cr100436k pmid: 21545118 |
[9] | Yu R P, Hesk D, Rivera N, Pelczer I, Chirik P J. Iron-catalysed yritiation of pharmaceuticals[J]. Nature, 2016, 529: 195-199. |
[10] |
Loh Y Y, Nagao K, Hoover A J, Hesk D, Rivera N R, Colletti S L, Davies I W, MacMillan D W C. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds[J]. Science, 2017, 358(6367): 1182-1187.
doi: 10.1126/science.aap9674 pmid: 29123019 |
[11] |
Atzrodt J, Derdau V, Kerr W J, Reid M. C-H functionalisation for hydrogen isotope exchange[J]. Angew. Chem. Int. Ed., 2018, 57(12): 3022-3047.
doi: 10.1002/anie.201708903 pmid: 29024330 |
[12] |
Geng H H, Chen X B, Gui J J, Zhang Y T, Shen Z Y, Qian P F, Chen J W, Zhang S L, Wang W. Practical synthesis of C1 deuterated aldehydes enabled by NHC catalysis[J]. Nat. Catal., 2019, 2: 1071-1077.
doi: 10.1038/s41929-019-0370-z |
[13] |
Puleo T R, Strong A J, Bandar J S. Catalytic alpha-selective deuteration of styrene derivatives[J]. J. Am. Chem. Soc., 2019, 141(4): 1467-1472.
doi: 10.1021/jacs.8b12874 |
[14] |
Li W, Rabeah J, Bourriquen F, Yang D, Kreyenschulte C, Rockstroh N, Lund H, Bartling S, Surkus A E, Junge K, Brückner A, Lei A, Beller M. Scalable and selective deuteration of (hetero)arenes[J]. Nat. Chem., 2022, 14: 334-341.
doi: 10.1038/s41557-021-00846-4 pmid: 35027706 |
[15] | Xia A Y, Xie X, Hu X P, Xu W, Liu Y H. Dehalogenative deuteration of unactivated alkyl halides using D2O as the deuterium source[J]. J. Org. Chem., 2019, 84(21): 13841-13857. |
[16] | Yoshida J, Kataoka K, Horcajada R, Nagaki A. Modern strategies in electroorganic synthesis[J]. Chem. Rev., 2008, 108(7): 2265-2299. |
[17] |
Francke R, Little R D. Redox catalysis in organic electrosynthesis: basic principles and recent developments[J]. Chem. Soc. Rev., 2014, 43(8): 2492-2521.
doi: 10.1039/c3cs60464k pmid: 24500279 |
[18] |
Yan M, Kawamata Y, Baran P S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance[J]. Chem. Rev., 2017, 117(21): 13230-13319.
doi: 10.1021/acs.chemrev.7b00397 pmid: 28991454 |
[19] | Sauermann N, Meyer T H, Qiu Y, Ackermann L. Electrocatalytic C-H activation[J]. ACS Catal., 2018, 8(8): 7086-7103. |
[20] | Yuan Y, Lei A W. Electrochemical oxidative cross-coupling with hydrogen evolution reactions[J]. Acc. Chem. Res., 2019, 52(12): 3309-3324. |
[21] | Xiong P, Xu H C. Chemistry with electrochemically generated N-centered radicals[J]. Acc. Chem. Res., 2019, 52(12): 3339-3350. |
[22] | Jiao K J, Xing Y K, Yang Q L, Qiu H, Mei T S. Site-selective C-H functionalization via synergistic use of electrochemistry and transition metal catalysis[J]. Acc. Chem. Res., 2020, 53(2): 300-310. |
[23] | Röckl J L, Pollok D, Franke R, Waldvogel S R. A decade of electrochemical dehydrogenative C, C-coupling of aryls[J]. Acc. Chem. Res., 2020, 53(3): 45-61. |
[24] | Siu J C, Fu N, Lin S. Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery[J]. Chem. Res., 2020, 53: 547-560. |
[25] |
Wiebe A, Lips S, Schollmeyer D, Franke R, Waldvogel S R. Single and twofold metal- and reagent-free anodic C-C cross-coupling of phenols with thiophenes[J]. Angew. Chem. Int. Ed., 2017, 56(46): 14727-14731.
doi: 10.1002/anie.201708946 pmid: 28967700 |
[26] | Hamby T B, LaLama M J, Sevov C S. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3-Csp2 coupling[J]. Science, 2022, 376(6591): 410-416. |
[27] | Cai C Y, Lai X L, Wang Y, Hu H, Song J, Yang Y, Wang C, Xu H C. Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C-H bonds[J]. Nat. Catal., 2022, 5: 943-951. |
[28] | Gao Y, Zhang B, He J, Baran P S. Ni-electrocatalytic enantioselective doubly decarboxylative C(sp3)-C(sp3) cross coupling[J]. J. Am. Chem. Soc., 2023, 145(21): 11518-11523. |
[29] | Tong X, Yang Z P, Del Angel Aguilar C E, Fu G C. Iron-catalyzed reductive cross-coupling of alkyl electrophiles with olefins[J]. Angew. Chem. Int. Ed., 2023, 62(34): e202306663. |
[30] | Xiong P, Xu H C. Chemistry with electrochemically generated N-centered radicals[J]. Acc. Chem. Res., 2019, 52(12): 3339-3350. |
[31] |
Kawamata Y. Vantourout J C, Hickey D P, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards M A, Garrido-Castro A F, deGruyter J N, Nakamura H, Knouose K, Qin C, Clay K J, Bao D, Li C, Starr J T, Garcia-Irizarry C, Sach N, White H S, Neurock M, Minteer S D, Baran P S. Electrochemically driven, Ni-catalyzed aryl amination: Scope, nechanism, and applications[J]. J. Am. Chem. Soc., 2019, 141(15): 6392-6402.
doi: 10.1021/jacs.9b01886 pmid: 30905151 |
[32] | Liu D, Liu Z R, Ma C, Jiao K J, Sun B, Wei L, Lefranc J, Herbert S, Mei T S. Nickel-catalyzed N-arylation of NH-sulfoximines with aryl halides via paired electrolysis[J]. Angew. Chem. Int. Ed., 2021, 60(17): 9444-9449. |
[33] |
Shen T, Lambert T H. Electrophotocatalytic diamination of vicinal C-H bonds[J]. Science, 2021, 371(6529): 620-626.
doi: 10.1126/science.abf2798 pmid: 33542135 |
[34] | Hou Z W, Liu D J, Xiong P, Lai X L, Song J, Xu H C. Site-selective electrochemical benzylic C-H amination[J]. Angew. Chem. Int. Ed., 2021, 60(6): 2943-2947. |
[35] | Kurono N, Honda E, Komatsu F, Orito K, Tokuda M. Regioselective synthesis of substituted 1-indanols, 2,3-dihydrobenzo-furans and 2,3-dihydroindoles by electrochemical radical cyclization using an arene mediator[J]. Tetrahedron, 2004, 60(8): 1791-1801. |
[36] |
Zhang W, Lin S. Electroreductive carbofunctionalization of alkenes with alkyl bromides via a radical-polar crossover mechanism[J]. J. Am. Chem. Soc., 2020, 142(49): 20661-20670.
doi: 10.1021/jacs.0c08532 pmid: 33231074 |
[37] | Siu J C, Fu N, Lin S. Catalyzing electrosynthesis: A homogeneous electrocatalytic approach to reaction discovery[J]. Acc. Chem. Res., 2020, 53(3): 547-560. |
[38] |
Dong X, Roeckl J L, Waldvogel S R, Morandi B. Merging shuttle reactions and paired electrolysis for reversible vicinal dihalogenations[J]. Science, 2021, 371(6528): 507-514.
doi: 10.1126/science.abf2974 pmid: 33510026 |
[39] | Zhang Q Y, Lu P X, Wang S L, Li L X. Qua G R, Guo H M. Electrochemical enantioselective dihydroxylation reaction of N-alkenyl nucleobases for the construction of chiral acyclic nucleosides[J]. Org. Chem. Front., 2022, 9(18): 4818-4822. |
[40] | Cai C Y, Zheng Y T, Li J F, Xu H C. Cu-electrocatalytic diazidation of alkenes at ppm catalyst loading[J]. J. Am. Chem. Soc., 2022, 144(27): 11980-11985. |
[41] | Zhang B, Gao Y, Hioki Y, Oderinde M S, Qiao J X, Rodriguez K X, Zhang H J, Kawamata Y, Baran P S. Ni-electrocatalytic Csp3-Csp3 doubly decarboxylative coupling[J]. Nature, 2022, 606: 313-318. |
[42] | Zhang W, Lu L X, Zhang W, Wang Y, Ware S D, Mondragon J, Rein J, Strotman N, Lehnherr D, See K A, Lin S. Electrochemically driven cross-electrophile coupling of alkyl halides[J]. Nature, 2022, 604: 292-297. |
[43] | Liu Y, Li P, Wang Y, Qiu Y. Electroreductive cross-electrophile coupling (eXEC) reactions[J]. Angew. Chem. Int. Ed., 2023, 62: e202306679. |
[44] | Sun G Q, Zhang W, Liao L L, Li L, Nie Z H, Zhang J G, Wu Z, Yu D G. Nickel-catalyzed electrochemical carboxylation of unactivated aryl and alkyl halides with CO2[J]. Nat. Commun., 2021, 12: 7086. |
[45] | Hamby T B, LaLama M J, Sevov C S. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3-Csp2 coupling[J]. Science, 2022, 376(6591): 410-416. |
[46] | Taily I M, Saha D, Banerjee P. Direct synthesis of paracetamol via site-selective electrochemical ritter-type C-H amination of phenol[J]. Organic Letters, 2022, 24(12): 2310-2314. |
[47] |
Jat P K, Dabaria K K, Bai R, Yadav L, Badsara S S. Electrochemical bisarylation of carbonyls: a direct synthetic strategy for bis(indolyl)methane[J]. J. Org. Chem., 2022, 87(19): 12975-12985.
doi: 10.1021/acs.joc.2c01524 pmid: 36205060 |
[48] | Lei C, Liang F Y, Li J, Chen W Q, Huang B B. Electrochemical reductive dechlorination of chlorinated volatile organic compounds (Cl-VOCs): Effects of molecular structure on the dehalogenation reactivity and mechanisms[J]. Chem. Eng. J., 2019, 358: 10545-1064. |
[49] | Mazzucato M, Isse A A, Durante C. Dissociative electron transfer mechanism and application in the electrocatalytic activation of organic halides[J]. Curr. Opin. Electrochem., 2023, 39: 101254. |
[50] | Cockrell J R, Murray R W. Deuterium labeling by electrochemical reactions[J]. J. Electrochem. Soc., 1972, 119: 849. |
[51] | Renaud R N. Electrochemical synthesis of deuterio organic compounds. I. electrochemical reduction of 1-halonaphthalenes and synthesis of 1-chloro-4-methylnaphthalene[J]. Can. J. Chem., 1974, 52(3): 376-380. |
[52] | Kimura M, Miyahara H, Moritani N, Sawaki Y. Electroreductive dehalogenation of chlorinated aromatic ethers. Unexpected electrogenerated base-catalyzed reactions[J]. J. Org. Chem., 1990, 55(12): 3897-3902. |
[53] | Lu L J, Li H, Zheng Y F, Bu F X, Lei A W. Facile and economical electrochemical dehalogenative deuteration of (hetero)aryl halides[J]. CCS Chem., 2020, 3(11): 2669-2675. |
[54] | Liu C B, Han S Y, Li M Y, Chong X D, Zhang B. Electrocatalytic deuteration of halides with D2O as the deuterium source over a copper nanowire arrays cathode[J]. Angew. Chem. Int. Ed., 2020, 59(42): 18527-18531. |
[55] | Yang K M, Feng T, Qiu Y A. Organo-mediator enabled electrochemical deuteration of styrenes[J]. Angew. Chem. Int. Ed., 2023, e202312803. |
[56] | Wang Y W, Zhao Z W, Pan D, Wang S Y, Jia K P, Ma D K, Yang G Q, Xue X S, Qiu Y A. Metal-free electrochemical carboxylation of organic halides in the presence of catalytic amounts of an organomediator[J]. Angew. Chem. Int. Ed., 2022, 61(41): e202210201. |
[57] |
Francke R, Little R D. Redox catalysis in organic electrosynthesis: basic principles and recent developments[J]. Chem. Soc. Rev., 2014, 43(8): 2492-2521.
doi: 10.1039/c3cs60464k pmid: 24500279 |
[58] | Qin S Y, Lei C, Wang X X, Chen W Q, Huang B B. Electrocatalytic activation of organic chlorides via direct and indirect electron transfer using atomic vacancy control of palladium-based catalyst[J]. Cell Reports Phys. Sci. 2022, 3(1): 100713. |
[59] | Mitesudo D, Okada T, Shimohara S, Mandai H, Suga S. Electro-reductive halogen-deuterium exchange and methylation of aryl halides in acetonitrile[J]. Electrochemistry, 2013, 81(5): 362-364. |
[60] |
Zhang B, Qiu C T, Wang S, Gao H, Yu K Y, Zhang Z F, Ling X, Ou W, Su C L. Electrocatalytic water-splitting for the controllable and sustainable synthesis of deuterated chemicals[J]. Science Bulletin, 2021, 66(6): 562-569.
doi: 10.1016/j.scib.2020.09.016 pmid: 36654426 |
[61] | Li P F, Kou G S, Feng T, Wang M Y, Qiu Y A. Electrochemical NiH-catalyzed C(sp3)-C(sp3) coupling of alkyl halides and alkyl alkenes[J]. Angew. Chem. Int. Ed., 2023, 62(44): e202311941. |
[62] |
Hioki Y, Costantini M, Griffin J, Harper K C, Merini M P, Nissl B, Kawamata Y, Baran P S. Overcoming the limitations of Kolbe coupling with waveform-controlled electrosynthesis[J]. Science, 2023, 380(6640): 81-87.
doi: 10.1126/science.adf4762 pmid: 37023204 |
[63] |
Li P F, Guo C C, Wang S Y, Ma D K, Feng T, Wang Y W, Qiu Y A. Facile and general electrochemical deuteration of unactivated alkyl halides[J]. Nat. Commun., 2022, 13: 3774.
doi: 10.1038/s41467-022-31435-9 pmid: 35773255 |
[64] | Wood D, Lin S. Deuterodehalogenation under net reductive or redox-neutral conditions enabled by paired electrolysis[J]. Angew. Chem. Int. Ed., 2023, 62(15): e202218858. |
[65] | Shen Z J, Zhu C, Zhang X, Yang C, Rueping M, Guo L, Xia W. Organoboron reagent-controlled selective (deutero)hydrodefluorination[J]. Angew. Chem. Int. Ed., 2023, 62(7): e202217244. |
[66] |
Schneider F, Bradbury M, Baillie T A, Stamler D, Hellriegel E, Cox D S, Loupe P S, Savola J M, Rabinovich-guilatt L. Pharmacokinetic and metabolic profile of deutetrabenazine (TEV-50717) compared with tetrabenazine in healthy volunteers[J]. Clin. Transl. Sci., 2020, 13(4): 707-717.
doi: 10.1111/cts.12754 pmid: 32155315 |
[67] | Falb E, Ulanenko K, Tor A, Gottesfeld R, Weitman M, Afri M, Gottlieb H, Hassner A. A highly efficient Suzuk-Miyaura methylation of pyridines leading to the drug pirfenidone and its CD3 version (SD-560)[J]. Green Chem., 2017, 19(21): 5046-5053. |
[68] | Khoury R, Marx C, Mirgati S, Velury D, Chakkamparambil B, Grossberg G T. AVP-786 as a promising treatment option for Alzheimer’s Disease including agitation[J]. Expert. Opin. Pharmacother., 2021, 22(7): 783-795. |
[69] | Cheng J M, Sheng J, Cheng X. Synthesis of methyl-d3 arene via electrochemical deuterodefluorination of trifluoromethyl arene[J]. Org. Lett., 2023, 25(30): 5602-5607. |
[1] | 李家俊, 张伟彬, 刘鑫宇, 杨静蕾, 尹易, 杨泽钦, 马雪婧. 二硫化钼和碳纳米管复合物电极用于盐差能转换[J]. 电化学(中英文), 2024, 30(6): 2307121-. |
[2] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[3] | 丁伟杰, 杨春晖, 冯钟涛, 陆仕荣, 程旭. 钯催化电化学烯丙位4-吡啶化反应中的配体作用研究[J]. 电化学(中英文), 2024, 30(5): 2313003-. |
[4] | 揭亮华, 徐海超. 电催化活性亚甲基化合物的环丙烷化反应[J]. 电化学(中英文), 2024, 30(4): 2313001-. |
[5] | 崔苗苗, 韩联欢, 曾兰平, 郭佳瑶, 宋维英, 刘川, 吴元菲, 罗世翊, 刘云华, 詹东平. 单层石墨烯微米尺度图案化和功能化:调控电子传输特性[J]. 电化学(中英文), 2024, 30(3): 2305251-. |
[6] | 梁志豪, 王家正, 王丹, 周剑章, 吴德印. 陷阱态对Ag-TiO2光诱导界面电荷转移的影响:电化学、光电化学和光谱表征[J]. 电化学(中英文), 2023, 29(8): 2208101-. |
[7] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[8] | 胡琼, 李诗琪, 梁伊依, 冯文星, 骆怡琳, 曹晓静, 牛利. 基于硼酸盐亲和辅助电化学调控ATRP的癌胚抗原超灵敏电化学适体传感研究[J]. 电化学(中英文), 2023, 29(6): 2218001-. |
[9] | 覃晓丽, 詹子颖, Sara Jahanghiri, Kenneth Chu, 张丛洋, 丁志峰. 金属有机框架材料在电化学/电化学发光免疫分析中的应用[J]. 电化学(中英文), 2023, 29(6): 2218003-. |
[10] | 静超, 龙亿涛. 暗场显微镜下的彩色“纳米星”[J]. 电化学(中英文), 2023, 29(6): 2218006-. |
[11] | 张生雅, 姚敏, 王泽, 刘天娇, 张蓉芳, 叶慧琴, 冯彦俊, 卢小泉. 通过扫描光电化学显微镜研究超分子光敏剂-二氧化钛薄膜系统的光诱导电子转移[J]. 电化学(中英文), 2023, 29(6): 2218005-. |
[12] | 陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002-. |
[13] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[14] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[15] | 张芯婉, 孟广源, 方立强, 常定明, 李童, 胡锦文, 陈鹏, 刘勇弟, 张乐华. 基于BP神经网络的电化学还原硝酸盐过程智能控制[J]. 电化学(中英文), 2023, 29(12): 211215-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||