电化学(中英文) ›› 2024, Vol. 30 ›› Issue (4): 2313001. doi: 10.13208/j.electrochem.2313001
收稿日期:
2023-03-22
修回日期:
2023-05-11
接受日期:
2023-06-29
出版日期:
2024-04-28
发布日期:
2023-07-11
Received:
2023-03-22
Revised:
2023-05-11
Accepted:
2023-06-29
Published:
2024-04-28
Online:
2023-07-11
Contact:
* Hai-Chao Xu, Tel: (86-592)2189211; E-mail: 摘要:
由于三元环结构在中间体、天然产品和药物的合成中发挥着重要作用,这使得开发新的策略以获得环丙烷已变得越来越重要。在此,我们提出了一种通过活性亚甲基化合物和芳基烯烃的分子间脱氢环化合成环丙烷的电催化方法。该电化学过程不需要化学氧化剂,允许从廉价和简单易得的原料中快速获得各种官能团化的环丙烷。
揭亮华, 徐海超. 电催化活性亚甲基化合物的环丙烷化反应[J]. 电化学(中英文), 2024, 30(4): 2313001.
Liang-Hua Jie, Hai-Chao Xu. Electrocatalytic Cyclopropanation of Active Methylene Compounds[J]. Journal of Electrochemistry, 2024, 30(4): 2313001.
Entry | Deviation from standard condition | Yield of 3 (%)b |
---|---|---|
1 | none | 82c |
2 | no electricity | 0 |
3 | no [Co]-1 | 0 |
4 | no Na2CO3 | 0 |
6 | at RT | 21 |
8 | graphite plate as anode | 33 |
9 | K2CO3 as base | 9 |
10 | Cs2CO3 as base | 66 |
11 | MeCN/MeOH (1:1) | 0 |
12 | MeCN as solvent | 61 |
13 | [Co]-2 as catalyst | 59 |
16 | [Co]-3 as catalyst | 38 |
17 | [Co]-4 as catalyst | 82 |
[1] | Pirenne V, Muriel B, Waser J V. Catalytic enantioselective ring-opening reactions of cyclopropanes[J]. Chem. Rev., 2021, 121(1): 227-263. |
[2] | Liu J X, Liu R X, Wei Y, Shi M. Recent developments in cyclopropane cycloaddition reactions[J]. Trends Chem., 2019, 1(8): 779-793. |
[3] |
Ebner C, Carreira E M. Cyclopropanation strategies in recent total syntheses[J]. Chem. Rev., 2017, 117(18): 11651-11679.
doi: 10.1021/acs.chemrev.6b00798 pmid: 28467054 |
[4] |
Talele T T. The "cyclopropyl fragment" is a versatile player that frequently appears in preclinical/clinical drug molecules[J]. J. Med. Chem., 2016, 59(19): 8712-8756.
pmid: 27299736 |
[5] |
Chen D Y K, Pouwer R H, Richard J A. Recent advances in the total synthesis of cyclopropane-containing natural products[J]. Chem. Soc. Rev., 2012, 41(13): 4631-4642.
doi: 10.1039/c2cs35067j pmid: 22592592 |
[6] | Zheng Z B, Cheng W F, Wang L J, Zhu J, Sun X L, Tang Y. Asymmetric catalytic [3+2] annulation ofdonor-acceptorcyclopropane with cyclic ketones: Facile access to enantioenriched1-oxaspiro[4.5]decanes[J]. Chin. J. Chem., 2020, 38(12): 1629-1634. |
[7] | Bi X F, Zhang Q C, Gu Z H. Transition-metal-catalyzed carbon-carbon bond activation in asymmetric synthesis[J]. Chin. J. Chem., 2021, 39(5): 1397-1412. |
[8] | Ford A, Miel H, Ring A, Slattery C N, Maguire A R, McKervey M A. Modern organic synthesis with alpha-diazocarbonyl compounds[J]. Chem. Rev., 2015, 115(18): 9981-10080. |
[9] |
Maas G. Ruthenium-catalysed carbenoid cyclopropanation reactions with diazo compounds[J]. Chem. Soc. Rev., 2004, 33(3): 183-190.
doi: 10.1039/b309046a pmid: 15026823 |
[10] | Ouyang Y Z, Zhan M, Zhou J, Jiao J, Hao H U, Yamada Y M A, Li P F. Z-bpy,a new c2-symmetric bipyridine ligand and its application in enantioselective copper (I)-catalyzed cyclopropanation of olefins[J]. Chin. J. Chem., 2019, 37(8): 807-810. |
[11] |
Green S P, Wheelhouse K M, Payne A D, Hallett J P, Miller P W, Bull J A. Thermal stability and explosive hazard assessment of diazo compounds and diazo transfer reagents[J]. Org. Process Res. Dev., 2020, 24(1): 67-84.
doi: 10.1021/acs.oprd.9b00422 pmid: 31983869 |
[12] | Schilter D. Doing without diazos[J]. Nat. Catal., 2021, 4(5): 347-347. |
[13] |
Jia M Q, Ma S M. New approaches to the synthesis of metal carbenes[J]. Angew. Chem. Int. Ed., 2016, 55(32): 9134-9166.
doi: 10.1002/anie.201508119 pmid: 27310878 |
[14] | Ye L W, Zhu X Q, Sahani R L, Xu Y, Qian P C, Liu R S. Nitrene transfer and carbene transfer in gold catalysis[J]. Chem. Rev., 2021, 121(14): 9039-9112. |
[15] | Zhang L. A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation[J]. Acc. Chem. Res., 2014, 47(3): 877-888. |
[16] |
Zhu D, Chen L F, Fan H L, Yao Q L, Zhu S F. Recent progress on donor and donor-donor carbenes[J]. Chem. Soc. Rev., 2020, 49(3): 908-950.
doi: 10.1039/c9cs00542k pmid: 31958107 |
[17] |
Moreau B, Charette A B. Expedient synthesis of cyclopropane alpha-amino acids by the catalytic asymmetric cyclopropanation of alkenes using iodonium ylides derived from methyl nitroacetate[J]. J. Am. Chem. Soc., 2005, 127(51): 18014-18015.
pmid: 16366547 |
[18] | Cao L Y, Luo J N, Yao J S, Wang D K, Dong Y Q, Zheng C, Zhuo C X. Molybdenum-catalyzed deoxygenative cyclopropanation of 1,2-dicarbonyl or monocarbonyl compounds[J]. Angew. Chem. Int. Ed., 2021, 60(28): 15254-15259. |
[19] |
Fischer D M, Lindner H, Amberg W M, Carreira E M. Intermolecular organophotocatalytic cyclopropanation of unactivated olefins[J]. J. Am. Chem. Soc., 2023, 145(2): 774-780.
doi: 10.1021/jacs.2c11680 pmid: 36607827 |
[20] |
Yuan Y, Yang J, Lei A W. Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals[J]. Chem. Soc. Rev., 2021, 50(18): 10058-10086.
doi: 10.1039/d1cs00150g pmid: 34369504 |
[21] | Cheng X, Lei A, Mei T S, Xu H C, Xu K, Zeng C. Recent applications of homogeneous catalysis in electrochemical organic synthesis[J]. CCS Chem., 2022, 4: 1120-1152. |
[22] | Jie L H, Guo B, Song J S, Xu H C. Organoelectrocatalysis enables direct cyclopropanation of methylene compounds[J]. J. Am. Chem. Soc., 2022, 144(5): 2343-2350. |
[23] | Xiong P, Xu H C. Chemistry with electrochemically generated N-centered radicals[J]. Acc. Chem. Res., 2019, 52(12): 3339-3350. |
[24] |
Zhu L, Xiong P, Mao Z Y, Wang Y H, Yan X M, Lu X, Xu H C. Electrocatalytic generation of amidyl radicals for olefin hydroamidation: Use of solvent effects to enable anilide oxidation[J]. Angew. Chem. Int. Ed., 2016, 55(6): 2226-2229.
doi: 10.1002/anie.201510418 pmid: 26732232 |
[25] | Hou Z W, Yan H, Song J S, Xu H C. Electrochemical synthesis of (Aza)indolines via dehydrogenative [3+2] annulation: application to total synthesis of (±)-hinckdentine A†[J]. Chin. J. Chem., 2018, 36(10): 909-915. |
[26] |
Yan H, Hou Z W, Xu H C. Photoelectrochemical C-H alkylation of heteroarenes with organotrifluoroborates[J]. Angew. Chem. Int. Ed., 2019, 58(14): 4592-4595.
doi: 10.1002/anie.201814488 pmid: 30650241 |
[27] |
Huang C, Qian X Y, Xu H C. Continuous-flow electrosynthesis of benzofused S-heterocycles by dehydrogenative C-S cross-coupling[J]. Angew. Chem. Int. Ed., 2019, 58(20): 6650-6653.
doi: 10.1002/anie.201901610 pmid: 30908799 |
[28] | Cai C Y, Lai X L, Wang Y, Hu H H, Song J, Yang Y, Wang C, Xu H C. Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C-H bonds[J]. Nat. Catal., 2022, 5(10): 943-951. |
[29] | Yan H, Song J, Zhu S, Xu H C. Synthesis of acridinium photocatalysts via site-selective C-H alkylation[J]. CCS Chem., 2021, 3: 317-325. |
[30] | Liu C K, Lin Y, Cai C, Yuan C C, Fang Z, Guo K. Continuous-flow electro-oxidative coupling of sulfides with activated methylene compounds leading to sulfur ylides[J]. Green Chem., 2021, 23(8): 2956-2961. |
[31] | Chen M, Wu Z J, Song J, Xu H C. Electrocatalytic allylic C-H alkylation enabled by a dual-function cobalt catalyst[J]. Angew. Chem. Int. Ed., 2022, 61(14): e202115954. |
[32] |
Cai C Y, Wu Z J, Liu J Y, Chen M, Song J, Xu H C. Tailored cobalt-salen complexes enable electrocatalytic intramolecular allylic C-H functionalizations[J]. Nat. Commun., 2021, 12(1): 3745.
doi: 10.1038/s41467-021-24125-5 pmid: 34145285 |
[33] | Qin T, Lv G, Mia H, Guan M, Xu C, Zhang G, Xiong T, Zhang Q. Cobalt-catalyzed asymmetric alkylation of (hetero)arenes with styrenes[J]. Angew. Chem. Int. Ed., 2022, 61(26): e202201967. |
[34] | Yin Y N, Ding R Q, Ouyang D C, Zhang Q, Zhu R. Highly chemoselective synthesis of hindered amides via cobalt-catalyzed intermolecular oxidative hydroamidation[J]. Nat. Commun., 2021, 12(1): 2552. |
[35] |
Ebisawa K, Izumi K, Ooka Y, Kato H, Kanazawa S, Komatsu S, Nishi E, Shigehisa H. Catalyst- and silane-controlled enantioselective hydrofunctionalization of alkenes by cobalt-catalyzed hydrogen atom transfer and radical-polar crossover[J]. J. Am. Chem. Soc., 2020, 142(31): 13481-13490.
doi: 10.1021/jacs.0c05017 pmid: 32648757 |
[1] | 崔苗苗, 韩联欢, 曾兰平, 郭佳瑶, 宋维英, 刘川, 吴元菲, 罗世翊, 刘云华, 詹东平. 单层石墨烯微米尺度图案化和功能化:调控电子传输特性[J]. 电化学(中英文), 2024, 30(3): 2305251-. |
[2] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[3] | 梁志豪, 王家正, 王丹, 周剑章, 吴德印. 陷阱态对Ag-TiO2光诱导界面电荷转移的影响:电化学、光电化学和光谱表征[J]. 电化学(中英文), 2023, 29(8): 2208101-. |
[4] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[5] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[6] | 胡琼, 李诗琪, 梁伊依, 冯文星, 骆怡琳, 曹晓静, 牛利. 基于硼酸盐亲和辅助电化学调控ATRP的癌胚抗原超灵敏电化学适体传感研究[J]. 电化学(中英文), 2023, 29(6): 2218001-. |
[7] | 覃晓丽, 詹子颖, Sara Jahanghiri, Kenneth Chu, 张丛洋, 丁志峰. 金属有机框架材料在电化学/电化学发光免疫分析中的应用[J]. 电化学(中英文), 2023, 29(6): 2218003-. |
[8] | 静超, 龙亿涛. 暗场显微镜下的彩色“纳米星”[J]. 电化学(中英文), 2023, 29(6): 2218006-. |
[9] | 张生雅, 姚敏, 王泽, 刘天娇, 张蓉芳, 叶慧琴, 冯彦俊, 卢小泉. 通过扫描光电化学显微镜研究超分子光敏剂-二氧化钛薄膜系统的光诱导电子转移[J]. 电化学(中英文), 2023, 29(6): 2218005-. |
[10] | 陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002-. |
[11] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[12] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[13] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[14] | 罗宇, 马如琴, 龚正良, 杨勇. 固态锂硫电池研究进展[J]. 电化学(中英文), 2023, 29(3): 2217007-. |
[15] | 温波, 朱卓, 李福军. 锂-氧气电池:正极催化剂的最新进展与挑战[J]. 电化学(中英文), 2023, 29(2): 2215001-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||