电化学(中英文) ›› 2025, Vol. 31 ›› Issue (5): 2514001. doi: 10.61558/2993-074X.3546
• 论文 • 上一篇
Hao Deng, Jia Liu, Zhong-Jun Hou*()
摘要:
介孔碳载体可通过纳米孔限域Pt沉积缓解磺酸根中毒问题,但其形态特征对氧传输的影响机制尚不明确。本研究结合碳载体形态模拟与改进的催化层团聚体模型,构建了阐明催化层孔结构演化、Pt利用率及氧传输过程的数学模型。结果表明,局部传质阻力主要由三个因素主导:(1)决定氧通量的活性位点密度;(2)决定最短传输路径的离聚物膜厚度;(3)影响实际路径长度的离聚物-Pt表面积比。在低离聚物/碳比例(I/C比)条件下,活性位点不足导致局域传输阻力显著增加(因素1主导);而高I/C比虽提升离聚物覆盖率,但膜厚增大会削弱传质(因素2-3主导)。大尺寸碳颗粒因降低外比表面积并增加离聚物厚度,导致局域传质阻力净升高。随着纳米孔内Pt占比或Pt质量分数增加,孔内Pt密度升高加剧孔道堵塞,导致活性位点减少并增加离聚物厚度及表面积,进一步增大传质阻力。同样地,Pt载量降低导致活性位点减少,氧传输阻力线性增加。本研究强调需协同优化载体形态、Pt分布及离聚物含量,在平衡催化活性与传质效率的同时抑制孔道堵塞,研究结果可以为高性能介孔碳催化剂设计提供系统化理论指导。