欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2025, Vol. 31 ›› Issue (5): 2514001.  doi: 10.61558/2993-074X.3546

• 论文 • 上一篇    

介孔碳质子交换膜燃料电池结构与传输阻力仿真分析

邓豪, 刘佳, 侯中军*()   

  1. 上海捷氢科技股份有限公司,上海 201805
  • 收稿日期:2025-02-28 修回日期:2025-04-09 接受日期:2025-05-05 发布日期:2025-05-05 出版日期:2025-05-28

Understanding the Morphology and Mass Transport Resistance of Mesoporous Carbon-Supported PEMFC Based on Modeling Analysis

Hao Deng, Jia Liu, Zhong-Jun Hou*()   

  1. Shanghai Hydrogen Propulsion Technology Co., Ltd., Shanghai, China
  • Received:2025-02-28 Revised:2025-04-09 Accepted:2025-05-05 Online:2025-05-05 Published:2025-05-28
  • Contact: *Zhong-Jun Hou, E-mail address: hou_zhongjun@shpt.com

摘要:

介孔碳载体可通过纳米孔限域Pt沉积缓解磺酸根中毒问题,但其形态特征对氧传输的影响机制尚不明确。本研究结合碳载体形态模拟与改进的催化层团聚体模型,构建了阐明催化层孔结构演化、Pt利用率及氧传输过程的数学模型。结果表明,局部传质阻力主要由三个因素主导:(1)决定氧通量的活性位点密度;(2)决定最短传输路径的离聚物膜厚度;(3)影响实际路径长度的离聚物-Pt表面积比。在低离聚物/碳比例(I/C比)条件下,活性位点不足导致局域传输阻力显著增加(因素1主导);而高I/C比虽提升离聚物覆盖率,但膜厚增大会削弱传质(因素2-3主导)。大尺寸碳颗粒因降低外比表面积并增加离聚物厚度,导致局域传质阻力净升高。随着纳米孔内Pt占比或Pt质量分数增加,孔内Pt密度升高加剧孔道堵塞,导致活性位点减少并增加离聚物厚度及表面积,进一步增大传质阻力。同样地,Pt载量降低导致活性位点减少,氧传输阻力线性增加。本研究强调需协同优化载体形态、Pt分布及离聚物含量,在平衡催化活性与传质效率的同时抑制孔道堵塞,研究结果可以为高性能介孔碳催化剂设计提供系统化理论指导。

关键词: 介孔碳载体, 电化学活性面积, 铂覆盖率, 氧传输阻力, 孔体积分布

Abstract:

Mesoporous carbon supports mitigate Pt sulfonic poisoning through nanopore-confined Pt deposition, yet their morphological impacts on oxygen transport remain unclear. This study integrates carbon support morphology simulation with an enhanced agglomerate model to establish a mathematical framework elucidating pore evolution, Pt utilization, and oxygen transport in catalyst layers. Results demonstrate dominant local mass transport resistance governed by three factors: (1) active site density dictating oxygen flux; (2) ionomer film thickness defining shortest transport path; (3) ionomer-to-Pt surface area ratio modulating practical pathway length. At low ionomer-to-carbon (I/C) ratios, limited active sites elevate resistance (Factor 1 dominant). Higher I/C ratios improve the ionomer coverage but eventually thicken ionomer films, degrading transport (Factors 2-3 dominant). The results indicate that larger carbon particles result in a net increase in local transport resistance by reducing external surface area and increasing ionomer thickness. As the proportion of Pt situated in nanopores or the Pt mass fraction increases, elevated Pt density inside the nanopores exacerbates pore blockage. This leads to the increased transport resistance by reducing active sites and increasing ionomer thickness and surface area. Lower Pt loading linearly intensifies oxygen flux resistance. The model underscores the necessity to optimize support morphology, Pt distribution, and ionomer content to prevent pore blockage while balancing catalytic activity and transport efficiency. These insights provide a systematic approach for designing high-performance mesoporous carbon catalysts.

Key words: mesoporous carbon support, electrochemical active surface area, Pt coverage, oxygen transport resistance, pore volume distribution