电化学(中英文) ›› 2025, Vol. 31 ›› Issue (5): 2514001. doi: 10.61558/2993-074X.3546
• 论文 • 上一篇
收稿日期:
2025-02-28
修回日期:
2025-04-09
接受日期:
2025-05-05
发布日期:
2025-05-05
出版日期:
2025-05-28
Hao Deng, Jia Liu, Zhong-Jun Hou*()
Received:
2025-02-28
Revised:
2025-04-09
Accepted:
2025-05-05
Online:
2025-05-05
Published:
2025-05-28
Contact:
*Zhong-Jun Hou, E-mail address: 摘要:
介孔碳载体可通过纳米孔限域Pt沉积缓解磺酸根中毒问题,但其形态特征对氧传输的影响机制尚不明确。本研究结合碳载体形态模拟与改进的催化层团聚体模型,构建了阐明催化层孔结构演化、Pt利用率及氧传输过程的数学模型。结果表明,局部传质阻力主要由三个因素主导:(1)决定氧通量的活性位点密度;(2)决定最短传输路径的离聚物膜厚度;(3)影响实际路径长度的离聚物-Pt表面积比。在低离聚物/碳比例(I/C比)条件下,活性位点不足导致局域传输阻力显著增加(因素1主导);而高I/C比虽提升离聚物覆盖率,但膜厚增大会削弱传质(因素2-3主导)。大尺寸碳颗粒因降低外比表面积并增加离聚物厚度,导致局域传质阻力净升高。随着纳米孔内Pt占比或Pt质量分数增加,孔内Pt密度升高加剧孔道堵塞,导致活性位点减少并增加离聚物厚度及表面积,进一步增大传质阻力。同样地,Pt载量降低导致活性位点减少,氧传输阻力线性增加。本研究强调需协同优化载体形态、Pt分布及离聚物含量,在平衡催化活性与传质效率的同时抑制孔道堵塞,研究结果可以为高性能介孔碳催化剂设计提供系统化理论指导。
邓豪, 刘佳, 侯中军. 介孔碳质子交换膜燃料电池结构与传输阻力仿真分析[J]. 电化学(中英文), 2025, 31(5): 2514001.
Hao Deng, Jia Liu, Zhong-Jun Hou. Understanding the Morphology and Mass Transport Resistance of Mesoporous Carbon-Supported PEMFC Based on Modeling Analysis[J]. Journal of Electrochemistry, 2025, 31(5): 2514001.
Parameters | Value | Unit |
---|---|---|
Active area | 25 | cm2 |
Pt loading | 0.25 | mg·cm-2 |
Ionomer to catalyst (I/C) ratio | 0.9 | / |
Packing density of carbon particles | 0.6 | / |
Pt mass fraction of catalyst | 50% | / |
Median Pt particle size | 2.0 | nm |
Standard deviation of Pt particle size | 0.5 | nm |
Fraction of Pt inside the nanopores | 65% | / |
Specific nanopore volume | 1.3 | |
Carbon particle diameter | 400 | nm |
Pt density | 21.45 | g·cm-3 |
Carbon density | 1 | g·cm-3 |
Ionomer density | 1.15 | g·cm-3 |
Interfacial coefficient | 0.15 | / |
Interfacial coefficient | 2500 | / |
Operating temperature T | 353.15 | K |
Operating pressure P | 1 | atm |
Water content in the ionomer λ | 10 | / |
Oxygen diffusivity in the ionomer | m2 s-1 |
[1] | Zhang G B, Qu Z G, Tao W Q, Mu Y T, Jiao K, Xu H, Wang Y. Advancing next-generation proton-exchange membrane fuel cell development in multi-physics transfer[J]. Joule, 2024, 8(1): 45-63. https://doi.org/10.1016/j.joule.2023.11.015. |
[2] | Jiao K, Xuan J, Du Q, Bao Z M, Xie B, Wang B W, Zhao Y, Fan L H, Wang H Z, Hou Z J, Huo S, Brandon N P, Yin Y, Guiver M D. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595: 361-369. https://doi.org/10.1038/s41586-021-03482-7. |
[3] | Ren P, Pei P C, Li Y H, Wu Z Y, Chen D F, Huang S W. Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions[J]. Prog. Energ. Combust., 2020, 80: 100859. https://doi.org/10.1016/j.pecs.2020.100859. |
[4] | Woo S, Lee S, Taning A Z, Yang T H, Park S H, Yim S D. Current understanding of catalyst/ionomer interfacial structure and phenomena affecting the oxygen reduction reaction in cathode catalyst layers of proton exchange membrane fuel cells[J]. Curr. Opin. Electroche., 2020, 21: 289-296. https://doi.org/10.1016/j.coelec.2020.03.006. |
[5] |
Jinnouchi R, Kudo K, Kodama K, Kitano N, Suzuki K, Minami S, Shinozaki K, Hasegawav N, Shinohara A. The role of oxygen-permeable ionomer for polymer electrolyte fuel cells[J]. Nat. Commun., 2021, 12: 4956-4964. https://doi.org/10.1038/s41467-021-25301-3.
doi: 10.1038/s41467-021-25301-3 URL pmid: 34400643 |
[6] | Jiao K, Li X G. Water transport in polymer electrolyte membrane fuel cells[J]. Prog. Energ. Combust., 2011, 37(3): 221-291. https://doi.org/10.1016/j.pecs.2010.06.002. |
[7] | Liang Z J, Hong Z B, Xie M Y, Gu D. Recent progress of mesoporous carbons applied in electrochemical catalysis[J]. New Carbon Mater., 2022, 37(1): 152-179. https://doi.org/10.1016/S1872-5805(22)60575-4. |
[8] | Huang Y H, Gu J, Hu Y D, Lei Y J, Yu T, Wang C. Preparation of mesoporous carbon with adjustable diameter and pore size[J]. Diam. Relat. Mater., 2022, 130: 109515. https://doi.org/10.1016/j.diamond.2022.109515. |
[9] | Wang G X, Zhao W, Mansoor M, Liu Y N, Wang X Y, Zhang K Y, Xiao C L, Liu Q S, Mao L L, Wang M, Lv H F. Recent progress in using mesoporous carbon materials as catalyst support for proton exchange membrane fuel cells[J]. Nanomaterials-Basel, 2023, 13(21): 2818-2827. https://doi.org/10.3390/nano13212818. |
[10] | Ramaswamy N, Zulevi B, McCool G, Shi Z X, Chavez A, Muller D A, Kongkanand A, Kumaraguru S. Graphitized mesoporous engineered carbon support for fuel cell applications[J]. ACS Appl. Eng. Mater., 2023, 1(10): 2543-2554. https://doi.org/10.1021/acsaenm.3c00354. |
[11] | Huang O, Hu L Y, Chen X C, Cai W J, Wang L, Wang B. Metal-organic framework-derived N-doped carbon with controllable mesopore sizes for low-Pt fuel cells[J]. Adv. Funct. Mater., 2023, 33(44): 2302582. https://doi.org/10.1002/adfm.202302582. |
[12] | Xi M, Chu T K, Wang X L, Li B, Yan D J, Ming P W, Zhang C M. Effect of mesoporous carbon on oxygen reduction reaction activity as cathode catalyst support for proton exchange membrane fuel cell[J]. Int. J. Hydrogen Energ., 2022, 47(65): 28074-28085. https://doi.org/10.1016/j.ijhydene.2022.06.131. |
[13] | Xi M, Chu T K, Wang X L, Li B, Yan D J, Ming P W, Zhang C M. Study on durability of proton exchange membrane fuel cell stack based on mesoporous carbon supported platinum catalysts under dynamic cycles conditions[J]. J. Power Sources, 2023, 553: 232277. https://doi.org/10.1016/j.jpowsour.2022.232277. |
[14] | Gu K, Kim E J, Sharm S K, Sharm P R, Bliznakov S, Hsiao B S, Rafailovich M H. Mesoporous carbon aerogel with tunable porosity as the catalyst support for enhanced proton-exchange membrane fuel cell performance[J]. Mater. Today Energy, 2021, 19: 100560. https://doi.org/10.1016/j.mtener.2020.100560. |
[15] | Sung M, Yi H, Han J, Lee J B, Yoon S H, Park T L. Enhanced performance and durability of proton exchange membrane fuel cell catalyst supports via nanodrilling-induced selective mesoporous carbon structures[J]. ACS Appl. Eng. Mater., 2025, 8(2): 1230-1240. https://doi.org/10.1021/acsaem.4c02713. |
[16] | Yarlagadda V, Ramaswamy N, Kukreja R S, Kumaraguru S. Ordered mesoporous carbon supported fuel cell cathode catalyst for improved oxygen transport[J]. J. Power Sources, 2022, 532: 231349. https://doi.org/10.1016/j.jpowsour.2022.231349. |
[17] | Wu M J, Meng Z H, Xiong Y F, Zhang H N, Zhang A J, Zhang H, Zhu L Y, Tang H B, Tian T, Tang H L. Structurally tunable graphitized mesoporous carbon for enhancing the accessibility and durability of cathode Pt-based catalysts for proton exchange membrane fuel cells[J]. Small Sci., 2024, 4(7): 2400016. https://doi.org/10.1002/smsc.202400016. |
[18] | Liu J J, Zenyuk I V. Proton transport in ionomer-free regions of polymer electrolyte fuel cells and implications for oxygen reduction reaction[J]. Curr. Opin. Electroche., 2018, 12: 202-208. https://doi.org/10.1016/j.coelec.2018.11.015. |
[19] | Tu W Y, Liu W J, Cha C S, Wu B L. Study of the powder/membrane interface by using the powder microelectrode technique I. The Pt-black/Nafion interfaces[J]. Electrochim. Acta, 1998, 43(24): 3731-3739. https://doi.org/10.1016/S0013-4686(98)00131-5. |
[20] | Liu W J, Wu B L, Cha C S. Surface diffusion and the spillover of H-adatoms and oxygen-containing surface species on the surface of carbon black and Pt/C porous electrodes[J]. J. Electroanal. Chem., 1999, 476(2): 101-108. https://doi.org/10.1016/S0022-0728(99)00371-X. |
[21] | Paulus U A, Veziridis Z, Schnyder B, Kuhnke M, Scherer G G, Wokaun A. Fundamental investigation of catalyst utilization at the electrode/solid polymer electrolyte interface Part I. Development of a model system[J]. J. Electroanal. Chem., 2003, 541: 77-91. https://doi.org/10.1016/S0022-0728(02)01416-X. |
[22] | Tominaka S, Wub C W, Kurodaa K, Osaka T. Electrochemical analysis of perpendicular mesoporous Pt electrode filled with pure water for clarifying the active region in fuel cell catalyst layers[J]. J. Power Sources, 2010, 195(8): 2236-2240. https://doi.org/10.1016/j.jpowsour.2009.11.002. |
[23] | Chan K, Eikerling M. A pore-scale model of oxygen reduction in ionomer-free catalyst layers of PEFCs[J]. J. Electrochem. Soc., 2011, 158(1): B18-B28. 10.1149/1.3505042. |
[24] | Debe M K. Tutorial on the Fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts[J]. J. Electrochem. Soc., 2013, 160(6): F522-F534. 10.1149/2.049306jes. |
[25] | Kudo K, Jinnouchi R, Morimoto Y. Humidity and temperature dependences of oxygen transport resistance of Nafion thin film on platinum electrode[J]. Electrochim. Acta, 2016, 209: 682-690. https://doi.org/10.1016/j.electacta.2016.04.023. |
[26] | Kudo K, Morimoto Y. Analysis of oxygen transport resistance of Nafion thin film on Pt electrode[J]. ECS Transactions, 2012, 50(2): 1487-1494. 10.1149/05002.1487ecst. |
[27] | Suzuki T, Kudo K, Morimoto Y. Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell[J]. J. Power Sources, 2013, 222: 379-389. https://doi.org/10.1016/j.jpowsour.2012.08.068. |
[28] | Parthasarathy A, Srinivasan S, Appleby A J, Martin C R. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion® interface—a microelectrode investigation[J]. J. Electrochem. Soc., 1992, 139(9): 2530-2537. 10.1149/1.2221258. |
[29] | Soboleva T, Zhao X S, Malek K, Xie Z, Navessin T, Holdcroft S. On the micro-, meso-, and macroporous structures of polymer electrolyte membrane fuel cell catalyst layers[J]. ACS Appl. Mater. Interfaces, 2010, 2(2): 375-384. https://doi.org/10.1021/am900600y. |
[30] | Park Y C, Tokiwa H, Kakinuma K, Watanabe M, Uchida M. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells[J]. J. Power Sources, 2016, 315: 179-191. https://doi.org/10.1016/j.jpowsour.2016.02.091. |
[31] | Kobayashi A, Fujii T, Harada C, Yasumoto E, Takeda K, Kakinuma K, Uchida M. Effect of Pt and ionomer distribution on polymer electrolyte fuel cell performance and durability[J]. ACS Appl. Energy Mater., 2010, 4(3): 2307-2317. https://doi.org/10.1021/acsaem.0c02841. |
[32] |
Lopez-Haro M, Guetaz L, Printemps T, Morin A, Escribano S, Jouneau P H, Bayle-Guillemaud P, Chandezon F, Gebel G. Three-dimensional analysis of Nafion layers in fuel cell electrodes[J]. Nat. Commun., 2014, 5: 5229-5234. https://doi.org/10.1038/ncomms6229.
doi: 10.1038/ncomms6229 URL pmid: 25354473 |
[33] | Zou G F, Chen W S, She J, Yang T Q, Chen B. Effects of water dynamic behavior on oxygen transport in catalyst layers: A pore-scale study of proton exchange membrane fuel cells[J]. Int. Commun. Heat. Mass., 2025, 164(Part A)108806. https://doi.org/10.1016/j.icheatmasstransfer.2025.108806. |
[34] | Dou S J, Hao L, Wang Y H, Wang Q Q. Pore-scale study of coupled charge, gas, and liquid water transport in the catalyst layer of PEM fuel cells[J]. Fuel, 2025, 380: 133141. |
[35] | Sun F, Di Q, Chen M, Liu H J, Wang H J. Exploring local oxygen transport in low-Pt loading proton exchange membrane fuel cells: A comprehensive review[J]. eTransportation, 2024, 20: 100327. https://doi.org/10.1016/j.etran.2024.100327. |
[36] | Shin S, Kim A R, Um S. Computational prediction of nanoscale transport characteristics and catalyst utilization in fuel cell catalyst layers by the lattice Boltzmann method[J]. Electrochim. Acta, 2018, 275: 87-99. https://doi.org/10.1016/j.electacta.2018.04.138. |
[37] | Zhao C F, Yuan S, Cheng X J, Zheng Z F, Liu J, Yin J W, Shen S Y, Yan X Y, Zhang J L. The effect of catalyst layer design on catalyst utilization in PEMFC studied via stochastic reconstruction method[J]. Energy Ai, 2023, 13: 100245. https://doi.org/10.1016/j.egyai.2023.100245. |
[38] | Ishikawa H, Sugawara Y, Inoue G, Kawase M. Effects of Pt and ionomer ratios on the structure of catalyst layer: A theoretical model for polymer electrolyte fuel cells[J]. J. Power Sources, 2018, 374: 196-204. https://doi.org/10.1016/j.jpowsour.2017.11.026. |
[39] | Hao L, Moriyama K, Gu W B, Wang C Y. Modeling and experimental validation of Pt loading and electrode composition effects in PEM fuel cells[J]. J. Electrochem. Soc., 2015, 16(88): F854-F867. 10.1149/2.0221508jes. |
[40] | Xie B, Zhang G B, Xuan J, Jiao K. Three-dimensional multi-phase model of PEM fuel cell coupled with improved agglomerate sub-model of catalyst layer[J]. Energ. Convers. Manage., 2019, 199: 112051. https://doi.org/10.1016/j.enconman.2019.112051. |
[41] | Wang N, Qu Z G, Jiang Z Y, Zhang G B. A unified catalyst layer design classification criterion on proton exchange membrane fuel cell performance based on a modified agglomerate model[J]. Chem. Eng. J., 2022, 447: 137489. https://doi.org/10.1016/j.cej.2022.137489. |
[42] | Samris A, Mounir H. Using a three-dimensional computational fluid dynamics model and an agglomerate model to investigate the effect of varying agglomerate parameters and output voltages on proton exchange membrane fuel cell performance[J]. Heliyon, 2024, 10(11): e32277. https://doi.org/10.1016/j.heliyon.2024.e32277. |
[43] | An K B, Fang W Z, Xuan Z H, Zhao G R, Ling H, Tao W Q. Mechanisms of oxygen transport resistance of mesoporous carbon-supported catalysts in fuel cells[J]. J. Mater. Chem. A, 2025, 13: 2143-2154. https://doi.org/10.1039/D4TA06413E. |
[44] | Fan L H, Wang J Q, Diaz D F R, Li L C, Wang Y, Jiao K. Molecular dynamics modeling in catalyst layer development for PEM fuel cell[J]. Prog. Energ. Combust., 2025, 108: 101220. https://doi.org/10.1016/j.pecs.2025.101220. |
[45] | Kikkawa N, Kimura M. Comprehensive molecular dynamics study of oxygen diffusion in carbon mesopores: Insights for designing fuel-cell catalyst supports[J]. Langmuir, 2024 40(3): 1674-1687. https://doi.org/10.1021/acs.langmuir.3c02627. |
[46] | Scherzer A C, Schneider P, Herring P K, Klingele M, Zamel N, Gerteisen D. Modeling the morphological effects of catalyst and ionomer loading on porous carbon supports of PEMFC[J]. J. Electrochem. Soc., 2022, 169(3): 034509-034522. 10.1149/1945-7111/ac58c2. |
[47] | Sabharwal M, Pant L M, Patel N, Secanell M. Computational analysis of gas transport in fuel cell catalyst layer under dry and partially saturated conditions[J]. J. Electrochem. Soc., 2019, 166(7): F3065-F3080. 10.1149/2.0081907jes. |
[48] | Olbrich W, Kadyk T, Sauter U, Eikerling M. Review-wetting phenomena in catalyst layers of PEM fuel cells: Novel approaches for modeling and materials research[J]. J. Electrochem. Soc., 2022, 169(5): 054521-054531. 10.1149/1945-7111/ac6e8b. |
[49] | Ren H, Teng Y, Meng X C, Fang D H, Huang He, Geng J T, Shao Z G. Ionomer network of catalyst layers for proton exchange membrane fuel cell[J]. J. Power Sources, 2021, 506: 230186. https://doi.org/10.1016/j.jpowsour.2021.230186. |
[50] | Srouji A C, Zheng L J, Dross R, Aaron D, Mench M M. The role of water management on the oxygen transport resistance in polymer electrolyte fuel cell with ultra-low precious metal loading[J]. J. Power Sources, 2017, 364: 92-100. https://doi.org/10.1016/j.jpowsour.2017.07.036. |
[51] | Salari S, Tam M, McCague C, Stumper J, Bahrami M. The ex-situ and in-situ gas diffusivities of polymer electrolyte membrane fuel cell catalyst layer and contribution of primary pores, secondary pores, ionomer and water to the total oxygen diffusion resistance[J]. J. Power Sources, 2020, 449: 227479. https://doi.org/10.1016/j.jpowsour.2019.227479. |
[1] | 崔爱林, 白洋, 俞宏英, 孟惠民. Pt/TiO2-CNx催化剂中纳米TiO2 (A)/(R)相含量的电催化“火山形”效应[J]. 电化学(中英文), 2022, 28(5): 2110021-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||