Please wait a minute...
欢迎访问《电化学(中英文)》期刊官方网站,今天是

当期目录

    2022年 第28卷 第3期    刊出日期:2022-03-28
    电化学前沿专辑(蔡文斌教授、廖洪钢教授、彭章泉研究员主编)
    第28卷第3期封面和目次
    2022, 28(3):  0-0. 
    摘要 ( 251 )   PDF (11889KB) ( 238 )  
    相关文章 | 计量指标
    教程
    原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用
    Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎
    2022, 28(3):  2108541.  doi:10.13208/j.electrochem.210854
    摘要 ( 2471 )   RichHTML ( 8388)   PDF (3564KB) ( 6011 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    近年来,析氧反应(oxygen evolution reaction)中针对高效且具有成本效益的电催化剂开发一直是构筑有效利用可再生能源存储系统和水分解生产清洁氢能燃料的重大障碍。OER过程涉及四电子、四质子耦合并形成氧-氧(O-O)键,因此动力学上进程缓慢。为提升其在水分解产氢及二氧化碳还原反应中的应用,需要开发高效催化剂,降低OER过电位,以减轻能量转换过程中固有的能量损失。研究表明,IrO2和RuO2具有较低析氧过电位,但储量低、价格昂贵,大大限制了其在析氧反应中的大规模应用。而Ni-Fe基析氧催化剂在碱性水分解反应中展现了优异的性能,其在水分解过程中的催化机制仍有待进一步研究。
    为了解决Ni-Fe基催化剂在析氧反应过程中反应位点及催化反应机制等关键问题,迫切需要更先进的原位技术来准确表征,原位追踪催化剂形态变化与电解质/电极之间的界面相互作用的影响。光谱与电化学结合的原位技术可以监测析氧反应过程催化剂自身的变化。目前,已有大量原位光谱技术与电化学进行结合,揭示Ni-Fe基催化剂在OER过程中的反应机理及活性位点,包括原位表面增强拉曼光谱、原位同步辐射X射线吸收光谱、原位紫外-可见光谱、原位扫描电化学显微镜及原位穆斯堡尔光谱等。其中,原位拉曼技术可以观察Ni-Fe催化剂的振动,可以在电解液中施加测试电压条件下监测电化学反应过程中的中间体,从而提供实时反应信息,有助于追踪电化学驱动反应是如何发生的。原位同步辐射技术可以研究OER过程中Ni-Fe催化剂材料的电子结构和局部几何结构的信息,但目前的研究中更多的是探究Ni的价态变化,对Fe的研究信息较少。原位紫外-可见光谱也主要是针对Ni(OH)2的变化展开研究,逐渐提高施加电位,Ni(OH)2会向着NiOOH逐渐变化,紫外-可见技术可以追踪Ni-Fe基电催化剂中的金属氧化过程。众多电化学原位光谱技术中,57Fe穆斯堡尔谱因具有超高的能量分辨率,是确定催化剂相结构、鉴定活性位点、阐明催化机理以及确定催化活性与催化剂配位结构之间关系的最佳手段。此外,原位穆斯堡尔光谱技术基于原子核和核外电子的超精细相互作用而给出的同质异能移、四极矩分裂以及有效磁场等针对催化剂中的Fe位点的氧化态、电子自旋构型、对称性和磁性信息进行研究,为Ni-Fe基催化剂在析氧反应中的应用提供强有力的支持。
    1957年,德国科学家鲁道夫·路德维希·穆斯堡尔(Rudolf Ludwig Mössbauer)在其27岁时,发现作为晶格谐振子的原子在发射或吸收γ射线时以一定的概率不会改变它们的量子力学状态,而这一γ射线的核共振吸收现象于1961年获得诺贝尔物理学奖,不久后被命名为穆斯堡尔效应。穆斯堡尔效应是来自于无反冲的γ射线吸收和发射的核共振现象,能量Ee处于激发态的原子核(Z质子和N中子)通过产生能量为Eγγ射线跃迁到能量为Eg的基态,γ射线可能会被处于基态的另一个相同类型的原子核(相同的ZN)吸收,从而转变为能量Ee的激发态。只有当发射线和吸收线足够重叠时,才能看到共振吸收。
    原位穆斯堡尔谱在Ni-Fe催化剂析氧反应中应用,首先需要搭建57Fe穆斯堡尔谱仪与电化学工作站联用。标准的穆斯堡尔光谱仪主要由放射源(通常是57Co在Rh或Pd金属基质中用于57Fe穆斯堡尔光谱)、速度传感器、速度校准装置、波形发生器和同步器、γ射线检测系统、多通道分析仪、计算机,并且可选配低温恒温器或高温烘箱,以控制测量过程处于适宜温度。实际测试过程中,穆斯堡尔谱可以通过速度扫描方法生成,利用移动驱动器或速度传感器以特定速度重复移动源或样品(所谓的多普勒运动),同时γ射线连续传输或发射穿过样品并计数在同步通道上。获得穆斯堡尔谱图后,基于穆斯堡尔谱数据库(https://medc.dicp.ac.cn/,由中国科学院大连化学研究所穆斯堡尔效应数据中心从全世界收集的穆斯堡尔谱样品数据),对57Fe穆斯堡尔谱进行分析拟合,对含Fe基材料的物相、价态、自旋态和配位结构进行归因和分析。数据分析拟合主要利用MossWinn数据分析和拟合软件(http://www.mosswinn.com/)。以Ni-Fe氢氧化物催化剂为例,对于原始催化剂,其仅存在一种Fe3+物种,当该催化剂参与OER过程后,可能会存在Fe4+,在双峰基础上,拟合结果中则会出现肩峰向负侧移动现象,可以确认高价Fe的存在,例如Fe4+。为充分证明高价Fe的存在,对于Ni-Fe基催化剂的穆斯堡尔谱测试,还需在工况条件下进行原位测试。
    20世纪80年代后期,非贵金属氧化物和氢氧化物代替贵金属氧化物阳极催化剂的电解水研究开始受到关注。Corrigan等通过将Fe杂质引入NiO阳极,测试过程中发现OER活性会增加,但后续的研究中对于Fe究竟如何改变Ni基催化剂的OER性能仍旧不清晰。尔后,原位穆斯堡尔谱的引入逐渐揭开Fe在Ni-Fe电催化水分解析氧反应中的作用。为提高测试准确性并保证穆斯堡尔谱信号的稳定,本实验室对原位穆斯堡尔谱装置做了开发和改进。主要包括三部分:(1) 穆斯堡尔光谱仪,(2) 电化学工作站,以及(3) 自主设计的原位OER电化学反应池。在我们的实验室中,使用了具有14.4 keV级γ射线的单线57Fe穆斯堡尔谱放射源57Co(Rh),可以减少电解液中的信号衰减并获得令人满意的信噪比,附带CHI660E电化学工作站。对于常规的OER测试,在室温298 K条件下进行测试,测试前首先用α-Fe对穆斯堡尔谱仪进行多普勒速度校准,在进行原位穆斯堡尔谱-OER实验之前,电解液用氮气或氩气饱和以去除溶解的氧气。为了保证测试信号的准确性,实验中所使用的电解池不含任何Fe杂质,因此采用了Teflon材料。为避免测试过程中产生的O2气泡对信号产生干扰,可以采用蠕动泵循环电解液,并且保证测试过程中局部的微反应环境的一致性。对于普通OER测试,仅需要少量催化剂,但对于原位57Fe穆斯堡尔谱测试,只有保证Ni-Fe催化剂中57Fe含量充足的条件下,才可以获得高质量信号。但OER过程中,不建议催化剂载量过高,催化过程中主要是表面催化剂在反应,当样品过厚时,深层样品无法参与析氧反应过程,可能会有部分Fe仍旧维持Fe3+状态。通常,对于常规57Fe穆斯堡尔光谱测量的催化剂,若在制备中使用普通Fe源,则需要Fe含量在5 ~ 10 mg·cm-2,这其中仅有~2.2%的自然丰度57Fe同位素,需要长时间监测才可以采集到信号。为保证实验的顺利进行,可以在样品制备过程中直接使用57Fe源,方便快捷采集高质量信号。为了保证样品测试的准确性,在OER开始前,我们可以在同一电解液中,在开路电位(OCP)下,对其进行测试,这一原始样品的测试可与后续施加电位的Ni-Fe催化剂测试结果进行对比。有外加电压测试时,需要保证催化剂处于稳定状态下进行测试,整个测试过程中保持电流密度稳定,这不仅可以保证催化剂的稳定性,还有助于确定催化剂的真实结构。
    利用原位57Fe穆斯堡尔谱,我们对通过Ni-Fe普鲁士蓝类似物原位拓扑转换获得的Ni-Fe羟基氧化物电催化剂进行了测试。基于原位拉曼技术,我们发现在阳极电位下,Ni-Fe催化剂中α-Ni(OH)2相会不可逆转变为γ-NiOOH。原位57Fe穆斯堡尔谱测试结果表明,在较低的施加电位(例如1.22 V 和1.32 V vs. RHE)下,Fe在NiFe0.2-OxHy中仅处于+3氧化态,其光谱结果与开路电位下NiFe0.2-OxHy谱图相似,其中只有一个双峰,两个峰的强度相等,可归因于高自旋 Fe3+物种。但随着外加电位增加并达到1.37 V,两个峰的强度开始变得不相等,开始出现一个小的肩峰,其同质异能移(δ)值约为-0.25 mm·s-1,可以归属为 Fe4+ 。随着电压的逐渐增加,催化剂中的Fe4+含量逐渐增加。在OER过程中,施加电位1.42 V vs. RHE时,Fe4+含量~ 12%。当施加的电势达到1.57 V时,催化剂中Fe4+的含量进一步增加到约40%。这一实例充分展现了原位57Fe穆斯堡尔谱与Ni-Fe催化OER过程的应用,也体现了NiFe0.2-OxHy催化剂原位产生的Fe4+物种的量与其水氧化反应性能呈正相关,进一步加深了对Ni-Fe水氧化催化机理的理解。
    Ni-Fe基催化剂因其价格低廉,电催化析氧性能优异,因此成为碱性水分解析氧过程的理想候选者。虽然Ni-Fe基电催化剂表现出优异的OER活性,但缺乏长期稳定性阻碍了其在商业中的应用。因此,充分了解Ni-Fe催化剂的衰减机理,包括形态、组成、晶体结构和活性位点数量的变化,对于设计稳定和高效Ni-Fe催化材料非常重要,充分了解Ni-Fe催化剂在OER过程中的电子结构及其与析氧反应中间体的相互作用尤为重要。原位拉曼及原位紫外-可见光谱可以对Ni-Fe催化剂中的Ni(OH)2到NiOOH的变化进行深入探究,而原位57Fe穆斯堡尔谱测试则可以揭示Ni-Fe基催化剂中Fe的电子环境及其电子的、结构的和磁性的变化。穆斯堡尔光谱为研究Ni-Fe催化剂中Fe的局部电子结构、局部配位、键合和氧化态的提供了强大技术支撑。最近,穆斯堡尔光谱在电催化领域获得了越来越多的关注,它对于检测不同铁基催化材料中的主要活性位点有着重要作用。

    综述
    脑神经电化学研究
    徐聪, 江迎, 于萍, 毛兰群
    2022, 28(3):  2108551.  doi:10.13208/j.electrochem.210855
    摘要 ( 1729 )   RichHTML ( 2988)   PDF (1658KB) ( 1181 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    大脑是认知、情感等神经活动的物质基础。脑内神经元通过化学信号及电信号相互连接,共同构成动态而复杂的神经信号网络,实现各项神经活动。因此,对于脑神经化学分子的分析与检测有助于揭示神经生理、病理过程中的分子机制,进而发展神经系统疾病的精准诊断及治疗手段。随着各学科的融合与发展,已有多种分析技术在不同层次实现神经分子的检测。其中,电化学分析方法具有高灵敏、高时空分辨等优势,有望在活体层次上精准描述特定神经分子在神经生理或病理过程中的动态变化。本文围绕选择性以及生理兼容性两大关键问题展开,以本课题组最新研究进展为例,系统阐述了电极界面的构筑原则以及电位型检测方法的独特优势,着重介绍了抗坏血酸在神经生理和病理过程中的动态变化规律,并对脑神经电化学分析领域的发展前景进行了展望。

    基于电化学分子探针合理设计的高选择性长程活体分析
    王越, 张立敏, 田阳
    2022, 28(3):  2108451.  doi:10.13208/j.electrochem.210845
    摘要 ( 567 )   RichHTML ( 86)   PDF (1146KB) ( 798 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    发展脑内化学物质的高选择性长期稳定的传感分析方法,对于准确获取脑生理病理过程的动力学信息,精准区分复杂的脑疾病分子机制具有重要的研究意义。本文从三个方面综述了基于新型电化学探针分子设计的脑内高选择性长程活体分析方面的研究进展:(1)通过设计并合成新型的O2·-、H2Sn、Ca2+、K+等的特异性有机分子探针,合理将特异性化学信号转换为高选择性的电化学信号,建立了系列高选择性的非电化学活性分子的活体电化学分析策略;(2)系统研究了传统Au-S键、Au-Se键、Au-C≡C键三种分子组装方式的界面电化学行为差异,优化并建立了基于Au-C≡C功能化的高稳定性电化学传感界面,发展了高选择性、长期稳定的Fe2+实时活体分析方法;(3)通过合理地将高稳定分子组装策略和抗生物污染界面相结合,制备了高选择性高稳定性的可逆型Ca2+微电极阵列,实现了脑中风模型下鼠脑中不同脑区Ca2+长达60天的实时追踪,以及癫痫模型下不同脑区四种离子(Ca2+、Na+、K+及pH)的动态实时成像及动力学分析。最后,该综述针对目前脑活体分析时神经递质、氨基酸等重要生理物质的多脑区实时分析的难点及移动清醒动物的无线传感分析策略进行了简要的展望。

    电输运谱在原位电化学界面测量应用中的最新进展
    穆张岩, 丁梦宁
    2022, 28(3):  2108491.  doi:10.13208/j.electrochem.210849
    摘要 ( 986 )   RichHTML ( 128)   PDF (3384KB) ( 1141 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    电化学/电催化技术是实现能源高效转化与储存的重要手段,并已经发展成为一个国际前沿领域。如今日渐深入的电催化研究开始要求更精确且多维度的电化学界面信息,从而指导实现电化学体系的优化,而这往往依赖于一些原位表征方法的发展和应用。电输运谱(electrical transport spectroscopy,ETS)是一种新兴的基于芯片平台的电化学原位表征技术,它可以实现电势扫描条件下电化学信号和电极材料电输运性质的同时获取。本文首先介绍了基于铂纳米线微纳器件的ETS信号原理(吸附现象导致的表面电子散射)和器件制作流程、几个典型电催化反应过程中铂表面状态的演变,以及电解质离子竞争吸附对铂催化氧还原反应动力学过程的影响。由于与电化学体系的高度匹配,ETS可应用于不同结构及金属类型材料体系(金和铂纳米颗粒)。金和铂表现出显著不同的离子吸附现象,尤其是对于弱吸附离子(高氯酸根和硫酸根)。通过电输运谱还可实时监测电化学过程中材料的相变及电子性质的变化。于是,ETS可被用于监测和实现二维材料电化学可控插层,理解电催化剂在电催化过程中的相变机制以及相变过程如何影响电催化活性,揭示二维半导体催化剂材料电催化过程的自门控效应。此外,ETS还被应用于生物电化学体系,探索电化学过程中的细胞导电机制。最后,本文对ETS的优点及不足进行总结,展望了ETS在未来电化学领域所面临的挑战和机遇。

    同步辐射表征技术在金属空气电池研究中的应用
    宋亚杰, 孙雪, 任丽萍, 赵雷, 孔凡鹏, 王家钧
    2022, 28(3):  2108461.  doi:10.13208/j.electrochem.210846
    摘要 ( 843 )   RichHTML ( 116)   PDF (2373KB) ( 782 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    电动汽车的快速发展迫切需要高能量密度的电池。近年来,金属空气电池由于其超高的理论能量密度,在工业和学术领域引起了广泛的关注。然而,其副反应严重、能量效率低、循环寿命有限等诸多缺点严重阻碍了其实际应用的可行性。了解电池反应机理并进一步制定有效的策略有利于金属-空气电池的实际应用。在过去十年中,先进的表征技术加速了金属空气电池的发展。特别是基于同步加速器的表征技术因其无损检测能力和高分辨率已被广泛应用于金属空气电池的机理理解。在这篇综述中,我们系统地总结了各种用于分析金属空气电池局部结构和化学特性的同步辐射表征技术,特别关注于这些先进的表征技术如何帮助理解电池降解机理和优化策略的本质。本进展报告旨在强调同步辐射表征在金属空气电池机理理解的关键作用。

    电催化氧还原反应的原位表征
    冯雅辰, 王翔, 王宇琪, 严会娟, 王栋
    2022, 28(3):  2108531.  doi:10.13208/j.electrochem.210853
    摘要 ( 1764 )   RichHTML ( 258)   PDF (1344KB) ( 2029 )  
    数据和表 | 参考文献 | 相关文章 | 计量指标

    燃料电池作为一种电化学能量转换系统,具有能量转换效率高、清洁度高等优点。氧还原反应(ORR)是燃料电池中重要的阴极反应。目前,电催化剂仍是制约燃料电池进一步商业化的关键材料之一。ORR反应催化机理的研究对于开发具有良好活性和高选择性的电催化剂具有重要价值。近年来人们通过各种先进的原位表征方法深入研究了ORR催化剂的机理和催化过程。本综述旨在总结用于原位表征技术应用于研究 ORR 反应机制的最新研究进展。我们首先简要介绍各种原位技术在ORR研究中的优势,包括电化学扫描隧道技术、 红外光谱、 拉曼光谱、 X射线吸收光谱、 X射线衍和透射电子显微镜等。然后,从催化剂的角度,总结了各种原位表征技术在催化剂形貌和电子结构演变以及催化过程中反应物和中间体的识别中的应用。最后,展望讨论了该领域原位技术的未来发展。

    研究论文
    单体电化学测量银纳米颗粒动态光解过程
    陈梦洁, 芦思珉, 王浩炜, 龙亿涛
    2022, 28(3):  2108521.  doi:10.13208/j.electrochem.210852
    摘要 ( 732 )   RichHTML ( 84)   PDF (888KB) ( 678 )  
    数据和表 | 参考文献 | 补充材料 | 相关文章 | 计量指标

    银纳米颗粒吸收光后会发生能量转换从而导致其晶体结构变化,分析光解过程中纳米颗粒的物理和化学性质十分重要。本文利用具有高灵敏度、高时间分辨率和高通量性质的单体电化学测量技术, 原位实时追踪单个银纳米颗粒的动态光解过程。当银纳米颗粒与限域电极界面碰撞时, 其会发生动态氧化, 从而产生高通量的法拉第电流信号。激光照射会使银纳米颗粒结构发生变化,导致瞬态电流幅值降低和碰撞频率升高。通过统计高通量计时电流信号, 实现了对银纳米颗粒在光照条件下的形貌和结构转变过程的定量评估。研究表明,单体电化学可精准获取光解过程中银纳米颗粒的结构变化信息,揭示颗粒之间物理化学性能的异质性,有助于在单颗粒尺度上对银光解动力学进行深入探究。

    基于非亲核电解液构建稳定的镁离子电池
    谢茂玲, 王钧, 胡晨吉, 郑磊, 孔华彬, 沈炎宾, 陈宏伟, 陈立桅
    2022, 28(3):  2108561.  doi:10.13208/j.electrochem.210856
    摘要 ( 906 )   RichHTML ( 89)   PDF (856KB) ( 1029 )  
    数据和表 | 参考文献 | 补充材料 | 相关文章 | 计量指标

    非亲核电解液被认为是新一代可用于镁离子电池的高稳定电解液。但由于电解液容易在镁金属表面产生不传导镁离子的钝化层,导致镁的电化学沉积/溶出过程在该电解液中表现出动力学缓慢、库仑效率较低等缺点。在本研究中,我们通过在非亲核电解液中引入二苯二硫醚(PDF)添加剂以实现对镁金属电极的界面调控。研究表明PDF产生的苯基硫醇盐中间体可以紧密结合在镁金属表面,并显著抑制了镁金属表面钝化层的生成。经界面优化后的镁金属电极的沉积-溶出库仑效率高达99.5%,并且表现出显著降低的过电位。利用此电解液,并以镁金属为负极、Mo6S7Se为正极构建的镁离子电池在室温下可稳定循环150周(0.1 C)。这类通过添加剂优化镁金属界面的策略也将有助于推进其他类型的镁离子电解液的实际应用。