[1] |
Wang Y X, Shan X N, Tao N J. Emerging tools for studying single entity electrochemistry[J]. Faraday Discuss., 2016, 193:9-39.
doi: 10.1039/C6FD00180G
URL
|
[2] |
Crooks R M. Concluding remarks: single entity electrochemistry one step at a time[J]. Faraday Discuss., 2016, 193:533-547.
doi: 10.1039/C6FD00203J
URL
|
[3] |
Baker L A. Perspective and prospectus on single-entity electrochemistry[J]. J. Am. Chem. Soc., 2018, 140(46):15549-15559.
doi: 10.1021/jacs.8b09747
pmid: 30388887
|
[4] |
Gooding J. Single entity electrochemistry progresses to cell counting[J]. Angew. Chem. Int. Ed., 2016, 55(42):12956-12958.
doi: 10.1002/anie.201606459
pmid: 27531025
|
[5] |
Lu S M, Peng Y Y, Ying Y L, Long Y T. Electrochemical sensing at a confined space[J]. Anal. Chem., 2020, 92(8):5621-5644.
doi: 10.1021/acs.analchem.0c00931
URL
|
[6] |
Kwon S J, Zhou H J, Fan F R F, Vorobyev V, Zhang B, Bard A J. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes-theory and experiments[J]. Phys. Chem. Chem. Phys., 2011, 13(12):5394-5402.
doi: 10.1039/c0cp02543g
URL
|
[7] |
Ren H, Edwards M A. Stochasticity in single-entity electrochemistry[J]. Curr. Opin. Electrochem., 2021, 25:100632.
|
[8] |
Ma W, Ma H, Chen J F, Peng Y Y, Yang Z Y, Wang H F, Ying. Y L, Tian H, Long Y T. Tracking motion trajectories of individual nanoparticles using time-resolved current traces[J]. Chem. Sci., 2017, 8(3):1854-1861.
doi: 10.1039/C6SC04582K
URL
|
[9] |
Ustarroz J, Kang M, Bullions E, Unwin P R. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events[J]. Chem. Sci., 2017, 8(3):1841-1853.
doi: 10.1039/c6sc04483b
pmid: 28553474
|
[10] |
Robinson D A, Liu Y W, Edwards M A, Vitti N J, Oja S M, Zhang B, White H S. Collision dynamics during the electrooxidation of individual silver nanoparticles[J]. J. Am. Chem. Soc., 2017, 139(46):16923-16931.
doi: 10.1021/jacs.7b09842
pmid: 29083174
|
[11] |
Peng Y Y, Ma H, Ma W, Long Y T, Tian H. Single-nano-particle photoelectrochemistry at a nanoparticulate TiO2-filmed ultramicroelectrode[J]. Angew. Chem. Int. Ed., 2018, 57(14):3758-3762.
doi: 10.1002/anie.201710568
URL
|
[12] |
Ma H, Ma W, Chen J F, Liu X Y, Peng Y Y, Yang Z Y, Tian H, Long Y T. Quantifying visible-light-induced ele-ctron transfer properties of single dye-sensitized ZnO entity for water splitting[J]. J. Am. Chem. Soc., 2018, 140(15):5272-5279.
doi: 10.1021/jacs.8b01623
URL
|
[13] |
Zhang J H, Zhou Y G. Single particle impact electrochemistry: analyses of nanoparticles and biomolecules[J]. J. Electrochem., 2019, 25(3):374-385.
|
[14] |
Sun L L, Wang W, Chen H Y. Correlated optical imaging and electrochemical recording for studying single nano-particle collsisons[J]. J. Electrochem., 2019, 25(3):386-399.
|
[15] |
Wang W, Su B F, Zhan D P. Preparation and charagterization of prussian blue modified nanoelectrode[J]. J. Ele-ctrochem., 2012, 18(3):252-256.
|
[16] |
Dick J E, Hilterbrand A T, Strawsine L M, Upton J W, Bard A J. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses[J]. Proc. Natl. Acad. Sci., 2016, 113(23):6403-6408.
doi: 10.1073/pnas.1605002113
URL
|
[17] |
Xiang Z P, Deng H Q, Peljo P, Fu Z Y, Wang S L, Mandler D, Sun G Q, Liang Z X. Electrochemical dynamics of a single platinum nanoparticle collision event for the hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2018, 57(13):3464-3468.
doi: 10.1002/anie.201712454
URL
|
[18] |
Tsuji T, Hashimoto S. Laser-induced fragmentation of colloidal nanoparticles[M]// Sugioka K (Editor). Handbook of laser micro- and nano-engineering. Spring, Cham. 2021: 1-20.
|
[19] |
Hajiesmaeilbaigi F, Mohammadalipour A, Sabbaghzadeh J, Hoseinkhani S, Fallah H R. Preparation of silver nanoparticles by laser ablation and fragmentation in pure water[J]. Laser Phys. Lett., 2006, 3(5):252-256.
doi: 10.1002/lapl.200510082
URL
|
[20] |
Hamad A H. Nanosecond laser generation of silver nano-particles in ice water[J]. Chem. Phys. Lett., 2020, 755(16):137782.
doi: 10.1016/j.cplett.2020.137782
URL
|
[21] |
Mika A P, Rousseau P, Domaracka A, Huber B A. Interaction of multiply charged ions with large free silver nanoparticles: multielectron capture, fragmentation, and sputtering phenomena[J]. Phys. Rev. B, 2019, 100(7):075439-1-7.
doi: 10.1103/PhysRevB.100.075439
URL
|
[22] |
Yu R J, Xu S W, Paul S, Ying Y L, Cui L F, Daiguji H, Hsu W L, Long Y T. Nanoconfined electrochemical sensing of single silver nanoparticles with a wireless nanopore electrode[J]. ACS Sens, 2021, 6(2):335-339.
doi: 10.1021/acssensors.0c02327
URL
|
[23] |
Lu S M, Chen J F, Peng Y Y, Ma W, Ma H, Wang H F, Hu P J, Long Y T. Understanding the dynamic potential distribution at the electrode interface by stochastic collision electrochemistry[J]. J. Am. Chem. Soc., 2021, 143(32):12428-12432.
doi: 10.1021/jacs.1c02588
URL
|
[24] |
Ma W, Ma H, Yang Z Y, Long Y T. Single Ag nanoparticle electro-oxidation: potential-dependent current traces and potential-independence electron transfer kinetic[J]. J. Phys. Chem. Lett., 2018, 9(6):1429-1433.
doi: 10.1021/acs.jpclett.8b00386
URL
|
[25] |
Kim J Y, Han D, Crouch G M, Kwon S R, Bohn P W. Capture of single silver nanoparticles in nanopore arrays detected by simulations amperometry and surface-enhanced raman scattering[J]. Anal. Chem., 2019, 91(7):4568-4576.
doi: 10.1021/acs.analchem.8b05748
URL
|
[26] |
Li X T, Batchelor-McAuley C, Compton R G. Silver nano-particle detection in real-word environments via particle impact electrochemistry[J]. ACS Sens, 2019, 4(2):464-470.
doi: 10.1021/acssensors.8b01482
URL
|
[27] |
Ma H, Chen J F, Wang H F, Hu P J, Ma W, Long Y T. Exploring dynamic interactions of single nanoparticles at interfaces for surface-confined electrochemical behavior and size measurement[J]. Nat. Commun., 2020, 11:2307.
doi: 10.1038/s41467-020-16149-0
URL
|
[28] |
Kamat P V, Flumiani M, Hartland G V. Picosecond dynamics of silver nanoclusters. photoejection of electrons and fragmentation[J]. J. Phys. Chem. B, 1998, 102(17):3123-3128.
doi: 10.1021/jp980009b
URL
|
[29] |
Eustis S, Krylova G, Eremenko A, Smirnova N, Schill A W, El-Sayed M. Growth and fragmentation of silver nanoparticles in their synjournal with a fs laser and CW light by photo-sensitization with benzophenone[J]. Photo-chem. Photobiol. Sci., 2005, 4(1):154-159.
|
[30] |
Jin R C, Cao Y C, Hao E, Metranux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation[J]. Nature, 2003, 425(6957):487-490.
doi: 10.1038/nature02020
URL
|
[31] |
Mohanty J, Palit D K, Shastri L V, Sapre A V. Plused laser excitation of phosphate stabilised silver nanoparticles[J]. J. Chem. Sci., 2000, 112(1) 63-72.
doi: 10.1007/BF02704301
URL
|
[32] |
Park J H, Boika A, Park H S, Lee H C, Bard A J. Single collision events of conductive nanoparticles driven by migration[J]. J. Phys. Chem. C, 2013, 117(13):6651-6657.
doi: 10.1021/jp3126494
URL
|
[33] |
Ellison J, Batchelor-McAuley C, Tschulik K, Compton R G. The use cylindrical micro-wire electrodes for nano-im-pact experiments: facilitating the sub-picomolar detection of single nanoparticles[J]. Sens. Actuators B Chem., 2014, 200:47-52.
doi: 10.1016/j.snb.2014.03.085
URL
|