电化学(中英文) ›› 2025, Vol. 31 ›› Issue (7): 2411161-2411161. doi: 10.61558/2993-074X.3526
李宏达, 沈秋婉*(), 张朝阳, 赵新悦, 魏源, 李世安
收稿日期:
2024-11-16
修回日期:
2025-01-23
接受日期:
2025-02-20
发布日期:
2025-02-20
出版日期:
2025-07-28
通讯作者:
沈秋婉
E-mail:shenqiuwan@dlmu.edu.cn
Hong-Da Li, Qiu-Wan Shen*(), Zhao-Yang Zhang, Xin-Yue Zhao, Yuan Wei, Shi-An Li
Received:
2024-11-16
Revised:
2025-01-23
Accepted:
2025-02-20
Online:
2025-02-20
Published:
2025-07-28
Contact:
Qiu-Wan Shen
E-mail:shenqiuwan@dlmu.edu.cn
摘要:
目前,新能源技术高速发展,储能系统广泛应用,锂离子电池在其中占据着主导地位,因此通过热管理技术保障其使用性能、安全性并延长使用寿命也至关重要。本文首先综述了锂电池热失控的诱因,并根据近年来相关文献对比了常用的三种锂电池热管理技术,即空气冷却、液体冷却和相变材料冷却。空气冷却技术因其结构简单、成本较低而被广泛研究,但控温效果较差。液体冷却技术通过液体介质的循环来带走热量,具有较好的冷却效果,但系统相对复杂。相变材料(PCM)冷却技术利用相变材料的高潜热来吸收和释放热量,能有效降低电池的峰值温度并提高温度均匀性,但导热系数低和液体泄漏是其主要问题。综上所述,锂电池热管理技术正朝着更高效、更安全和成本效益更高的方向发展。耦合冷却系统,如结合液体冷却和相变材料冷却的方法,显示出巨大的潜力。未来的研究将继续探索新的材料和技术,以满足社会和市场对锂电池性能和安全性的日益增长的需求。
李宏达, 沈秋婉, 张朝阳, 赵新悦, 魏源, 李世安. 锂电池热管理研究进展[J]. 电化学(中英文), 2025, 31(7): 2411161-2411161.
Hong-Da Li, Qiu-Wan Shen, Zhao-Yang Zhang, Xin-Yue Zhao, Yuan Wei, Shi-An Li. Research Progress on Thermal Management of Lithium-Ion Batteries[J]. Journal of Electrochemistry, 2025, 31(7): 2411161-2411161.
Year | Author | Research findings | Research method | Test discharge rate | Tmax |
---|---|---|---|---|---|
2016 | Lu[ | To explore the air cooling capability on the temperature uniformity and hotspots mitigation of a compact battery pack subject to various air flow paths, airflow rates | simulation | — | — |
2018 | Hong[ | The cooling performance of parallel air-cooled BTMS was improved by using secondary vents | simulation | 5C | Decreased by 5°C |
2018 | Chen[ | The battery spacing of the parallel air-cooling BTMS was optimized | simulation | 5C | Decreased by 3K |
2018 | Zhao[ | The influences of cooling channel size and air supply strategy on the thermal behavior of the battery pack were investigated | simulation | — | — |
2019 | Yu[ | A staggered battery pack consisting of three battery modules was developed | simulation and experimentation | 0.5C | 28.4°C |
2019 | Zhou[ | A novel cooling strategy based on air distribution pipe was proposed for cylindrical lithium-ion battery modules | simulation and experimentation | 3C | 305.7K |
2019 | Wu[ | The cooling efficiency of the air-cooled BTMS was improved through designing the flow pattern of the system. | simulation | 5C | Decreased by 4.5K |
2020 | Wen[ | The novel radiator with bionic surface structure was proposed and applied to battery module cooled by an axial air-cooled BTM system | simulation and experimentation | 3C | 308K |
2020 | Li[ | Analyze and improve the cooling effect of the battery cells in the U-type air-cooling BTMS | simulation | — | — |
2021 | Wang[ | A new method was proposed to improve the cooling performance of the BTMS by proposing a parallel plate mounting method, and the airflow distribution of the battery pack could be effectively improved | simulation | — | — |
2021 | Yi[ | An air-cooled T-type BTMS was designed based on traditional U-type and Z-type. | simulation and experimentation | 2.5C | Decreased by 2.2% |
2022 | Sahin[ | A new design method for cylindrical batteries was provided | simulation and experimentation | — | — |
2022 | Liu[ | A comprehensive optimization scheme with secondary outlet and baffle was proposed. | simulation and experimentation | 2.5C | Decreased by 2.17°C |
2023 | Hasan[ | Based on the conventional BTMS with Z- and U-Type structures, several new BTMS with the direction of the exit area parallel to the cooling channel have been designed | simulation | — | — |
2024 | Zhang[ | New Hook-type BTMS have been designed for a study | simulation | — | — |
Year | Author | Research findings | Research method | Test discharge rate | Tmax | ||
---|---|---|---|---|---|---|---|
2013 | Jin[ | A new ultra-thin microchannel liquid cold plate for thermal management of EV batteries was designed | experimentation | — | — | ||
2016 | Rao[ | A type of liquid cooling method based on mini-channel cold-plate is used | simulation and experimentation | 5 C | 35.2 °C | ||
2017 | Han[ | A L16 (44) array was selected to design 16 models for parametrization to identify the main and secondary factors, and then the optimal combination model was found | simulation | 2 C | 303.6 K | ||
2019 | Sheng[ | A novel serpentine-channel liquid cooling plate with double inlets and outlets was developed for better managing an undesirable temperature distribution of a cell module | simulation | 3/5/7 C | All below 36 °C | ||
2019 | Darcovich[ | Investigated Ice plates (flush with cell face) and Cold plates (bottom surface of cell) | simulation | — | — | ||
2019 | Chung[ | A thermal model for the pouch battery pack with liquid cooling is developed for thermal analysis of various pack designs | simulation | — | — | ||
2019 | Zhou[ | A novel cooling strategy based on the half-helical duct is proposed for the cylindrical lithium-ion battery module | simulation and experimentation | 5 C | 30.5-30.9 °C | ||
2020 | Wang[ | A novel modular liquid-cooled BTMS for cylindrical lithium ion cells was designed | simulation | 3 C | 37.67 °C | ||
2021 | Wen[ | The honeycomb-like BTMS integrated liquid cooling and PCM cooling was designed | simulation | Discharge current of 32.2 A | 309.15 K | ||
2022 | Gao[ | A novel gradient channel-based design of liquid-cooled BTMS is proposed | simulation and experimentation | 2 C | 36.4 °C | ||
2023 | Lv[ | A novel liquid cooling plate with a square spiral ring channel was designed | simulation and experimentation | 2 C | 33.63 °C | ||
2023 | Wei[ | A novel butterfly-shaped cooling channel was designed | simulation and experimentation | 2 C | 30.86 °C | ||
2024 | Sui[ | A BTMS consists of hybrid manifold channels is proposed | simulation | 3 C | Under 45 °C | ||
2024 | Chen[ | An effective Multi-U-Style channel structure in a liquid cooling plate is proposed | simulation | 6 C | 297.2 K |
Year | Author | Research findings | Research method | Test discharge rate | Tmax |
---|---|---|---|---|---|
2015 | Zhang[ | A special aluminum needle-fin radiator was analyzed | simulation | — | — |
2016 | Jiang[ | The thermal management performance of CPCM with different mass fractions of expanded graphite (EG) was investigated | simulation and experimentation | 5 C | All below 50 °C |
2016 | Hussain [ | An efficient thermal management system for high-power lithium-ion batteries based on a new composite material (nickel foam-paraffin wax) was designed | simulation and experimentation | 2 C | 31% and 24% reductions compared with natural convection and pure PCM, respectively |
2017 | Pan[ | copper fiber/paraffin CPCM was prepared based on solid-phase sintering technology | experimentation | Discharge current 35 A | 50% reduction compared to natural air cooling |
2017 | Zhang[ | The thermal performance of the battery heat dissipation structure with longitudinal fins and PCM was studied | simulation and experimentation | — | — |
2018 | Zou[ | Synergetic enhancement heat transfer using graphene and multi-walled carbon nanotubes (MWCNT) was put forward | simulation and experimentation | — | — |
2018 | Buonomo[ | A PCM with metal foam was numerically investigated | simulation | — | — |
2018 | Lazrak [ | A solution to enhance heat transfer inside the PCM by copper dutch weave was developed | simulation and experimentation | — | — |
2019 | Weng[ | An optimized PCM module combined with various fins was designed | simulation and experimentation | 1C | 29.1 °C |
2020 | Choudhari[ | Analysis of different fin structures in PCM-based BTMS | simulation | 2/3 C | 2.38% lower than pure PCM. And 9.28% lower than that. |
2021 | Zhang[ | A PCM-based thermal management module is built, then its numerical model is established and validated by experimental data | simulation | — | — |
2021 | Ling[ | A BTMS based on inorganic PCM was proposed | experimentation | 2 C | 52.3 °C |
2021 | Rajan[ | The application of 1-Tetradecanol as a PCM in a BTMS was studied | simulation | 2 C | 316 K |
2023 | Huang [ | A large size 3D graphene sponge CPCM has been developed | simulation | 1 C | 22-27 °C |
2024 | He[ | A novel MOF based CPCM was developed in a BTMS | simulation | 3 C | 61.38 °C |
2024 | Zhang[ | Inhibition of thermal runaway propagation by high-strength hydrogels was studied | experimentation | — | — |
Year | Author | Research findings | Research method | Test discharge rate | Tmax |
---|---|---|---|---|---|
2015 | Zhang[ | A hybrid system coupling expanded graphite phase change material with forced air convection was studied | experimentation | 1.5/2 C | Below 50 ℃ |
2019 | Hu[ | A battery thermal management system with thermal fin assisted PCM/expanded graphite structure coupled with air cooling was proposed | simulation | 5 C | Decreased by 38.72% |
2020 | Molaeimanesh[ | A thermal management system using polypropylene glycol as phase change material coupled with liquid cooling system was studied | experimentation | — | — |
2020 | Wen[ | The composite thermal management system integrated with mini-channel liquid cooling and air cooling is proposed. | simulation and experimentation | 4 C | 304.98 ℃ |
2021 | Zhuang[ | A BTMS with PCM coupled cooling plate arrayed in honeycomb manner is proposed | simulation | 3 C | — |
2021 | Wang[ | A BTMS with internal fin structure coupled with forced air convection cooling is proposed | experimentation | 4 C | 48.5 ℃ |
2022 | Jabbari[ | The coupling optimization of cooling and liquid cooling system based on PCM is proposed | simulation | 5 C | 46.3 ℃ |
2023 | Chen[ | A hybrid BTMS integrating direct liquid cooling with forced air cooling is proposed | simulation | 4 C | — |
2023 | Tian[ | a BTMS with honeycomb structure of a new hybrid liquid and PCM is proposed | simulation and experimentation | 2 C | 42.3 ℃ |
2024 | Cui[ | a hybrid thermal management incorporating phase change material and liquid microchannels was designed | Simulation | — | — |
[1] | Zhang H L, Ishrak M. F, Liu X Q. Development and forecasting of electrochemical energy storage: An evidence from China[J]. J. Energy Storage, 2024, 86: 111296. https://doi.org/10.1016/j.est.2024.111296 |
[2] | Li X H, Wang Z P, Zhang L, Sun F C, Cui D S. Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview[J]. Energy, 2023, 268: 126647. https://doi.org/10.1016/j.energy.2023.126647. |
[3] | Kumar R R, Alok K. Adoption of electric vehicle: A literature review and prospects for sustainability[J]. J. Clean. Prod., 2020, 253: 119911. https://doi.org/10.1016/j.jclepro.2019.119911 |
[4] | Feng X N, Ren D S, He X M, Ouyang M G. Mitigating Thermal Runaway of Lithium-Ion Batteries[J]. Joule, 2020. 4: 743-770. https://doi.org/10.1016/j.joule.2020.02.010. |
[5] | Delp S A, Borodin O, Olguin M, Eisner C G, Allen J L. Importance of reduction and oxidation stability of high voltage electrolytes and additives[J]. Electrochim. Acta, 2016, 209: 498-510. https://doi.org/10.1016/j.electacta.2016.05.100 |
[6] | Wang Q S, Ping P, Zhao X J, Chu G Q, Sun J H, Chen C H. Thermal runaway caused fire and explosion of lithium ion battery[J]. J. Power Sources, 2012, 208: 210-224. https://doi.org/10.1016/j.jpowsour.2012.02.038 |
[7] | Lai X, Zheng Y J, Zhou L, Gao W K. Electrical behavior of over discharge-induced internal short circuit in lithium-ion batteries[J]. Electrochim. Acta, 2018, 278: 245-254. https://doi.org/10.1016/j.electacta.2018.05.048 |
[8] | Wang Q S, Mao B B, Sun J H. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Prog. Energ. Combust., 2019, 73: 95-131. https://doi.org/10.1016/j.pecs.2019.03.002 |
[9] | Song L B, Zheng Y H, Xiao Z L, Wang C, Long T Y. Review on Thermal Runaway of Lithium-Ion Batteries for Electric Vehicles[J]. J. Electron. Mater., 2022, 51: 30-46. https://doi.org/10.1007/s11664-021-09281-0 |
[10] | Kong D P, Lv H P, Ping P, Wang G Q. A review of early warning methods of thermal runaway of lithium ion batteries[J]. J. Energy Storage, 2023, 64: 107073. https://doi.org/10.1016/j.est.2023.107073 |
[11] | Shahid S, Agelin-Chaab M. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries[J]. Energ. Convers. Man:X, 2022, 16: 100310. https://doi.org/10.1016/j.ecmx.2022.100310 |
[12] | Spotnitz R, Franklin J. A buse behavior of highGpower, lithiumGion cells[J]. J. Power Sources, 2003, 113(1): 81-100. https://doi.org/10.1016/S0378-7753(02)00488-3 |
[13] | Xu J, Wu Y J, Yin S. Investigation of effects of design parameters on the internal short-circuit in cylindrical lithium-ion batteries[J]. RSC Advances, 2017, 7(24): 14360-14371. https://doi.org/10.1039/C6RA27892B. |
[14] | Feng X N, Ouyang M G, Liu X, Lu L G, Xia Y, He X M. Thermal runaway mechanism of lithium-ion battery for electric vehicles: A review[J]. J. Energy Storage Materials, 2018, 10:246-267.https://doi.org/10.1016/j.ensm.2017.05.013. |
[15] | Zhao G, Wang X L, Zhang H Y, Negnevitsky M. A review of air-cooling battery thermal management systems for electric and hybrid electric vehicles[J]. J. Power Sources, 501: 230001. https://doi.org/10.1016/j.jpowsour.2021.230001. |
[16] | Wang T, Tseng K J, Zhao J Y, Wei Z B. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies[J]. Appl. Energy, 2014, 134: 229-238. https://doi.org/10.1016/j.apenergy.2014.08.013 |
[17] | Hong S H, Zhang X Q, Chen K, Wang S F. Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent[J]. Int. J. Heat Mass Tran., 2018, 116: 1204-1212. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.092 |
[18] | Pesaran A A. Battery thermal models for hybrid vehicle simulations[J]. J. Power Sources, 2002, 110(2): 377-382. https://doi.org/10.1016/S0378-7753(02)00200-8 |
[19] | Chen K, Chen Y M, Li Z Y, Yuan F, Wang S F. Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system[J]. Int. J. Heat Mass Tran., 2018, 127: 393-401. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.131. |
[20] | Yu X L, Lu Z, Zhang L Y, Wei L C, Cui X, Jin L W. Experimental study on transient thermal characteristics of stagger-arranged lithium-ion battery pack with air cooling strategy[J]. Int. J. Heat Mass Tran., 2019, 143:118576. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118576 |
[21] | Yang W, Zhou F, Zhou H B, Liu Y C. Thermal performance of axial air cooling system with bionic surface structure for cylindrical lithium-ion battery module[J]. Int. J. Heat Mass Tran., 2020, 161: 120307. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120307 |
[22] | Zhang F R, Yi M F, Wang P W, Liu C W. Optimization design for improving thermal performance of T-type air-cooled lithium-ion battery pack[J]. J. Energy Storage, 2021, 44:103464. https://doi.org/10.1016/j.est.2021.103464 |
[23] | Hasan H A, Togun H, Abed A M. A novel air-cooled Li-ion battery (LIB) array thermal management system - a numerical analysis[J]. Int. J. Therm. Sci., 2023, 190:108327. https://doi.org/10.1016/j.ijthermalsci.2023.108327 |
[24] | Lu Z, Meng X Z, Wei L C. Thermal management of densely-packed EV battery with forced air cooling strategies[J]. CUE 2015 - applied energy symposium and summit 2015: low carbon cities and urban energy systems, 2016, 88: 682-688. https://doi.org/10.1016/j.egypro.2016.06.098 |
[25] | Lu Z, Yu X L, Wei L C, Qiu Y L, Zhang L Y, Meng X Z, Jin LW. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement[J]. Appl. Therm. Eng., 2018, 136(25): 28-40. https://doi.org/10.1016/j.applthermaleng.2018.02.080 |
[26] | Zhou H B, Zhou F, Xu L P, Kong J Z, Yang Q X. Thermal performance of cylindrical Lithium-ion battery thermal management system based on air distribution pipe[J]. Int. J. Heat Mass Tran., 2019, 131: 984-998. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.116 |
[27] | Chen K, Wu W X, Yuan F, Chen L, Wang S F. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167(15): 781-790. https://doi.org/10.1016/j.energy.2018.11.011 |
[28] | Li X, Zhao J, Yuan J, Duan J B, Liang C Y. Simulation and analysis of air cooling configurations for a lithium-ion battery pack[J]. J. Energy Storage, 2021, 35: 102270. https://doi.org/10.1016/j.est.2021.102270 |
[29] | Wang H L Y. Cooling performance optimization of air-cooled battery thermal management system[J]. Appl. Therm. Eng.: Design, processes, equipment, economics, 2021, 195:117242. https://doi.org/10.1016/j.applthermaleng.2021.117242 |
[30] | Sahin R C, Gocmen S, Etkin E. Thermal management system for air-cooled battery packs with flow-disturbing structures[J]. J. Power Sources, 2022, 551(15): 232214. https://doi.org/10.1016/j.jpowsour.2022.232214 |
[31] | Zhang F R, Liu P W, He Y X, Li S Y. Cooling performance optimization of air cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle[J]. J. Energy Storage, 2022, 52: 104678. https://doi.org/10.1016/j.est.2022.104678 |
[32] | Zhang S B, Nie F, Cheng J P. Optimizing the air flow pattern to improve the performance of the air-cooling lithium-ion battery pack[J]. Appl. Therm. Eng., 2024, 236:121486. https://doi.org/10.1016/j.applthermaleng.2023.121486 |
[33] | E J Q, Han D D, Qiu A, Zhu H, Deng Y W, Chen J W, Zhao X N, Zhou W, Wang H C, Chen J M. Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system[J]. Appl. Therm. Eng., 2018, 132: 508-520. https://doi.org/10.1016/j.applthermaleng.2017.12.115 |
[34] | Jin L W, Kong X X, Lee P S, Fang Y, Chou S K. Ultra-thin minichannel LCP for EV battery thermal management[J]. Appl. Energy, 2014, 113: 1786-1794. https://doi.org/10.1016/j.apenergy.2013.07.013 |
[35] | Darcovich K, Macneil D D, Recoskie S. Comparison of cooling plate configurations for automotive battery pack thermal management[J]. Appl. Therm. Eng., 2019, 155(5): 185-195. https://doi.org/10.1016/j.applthermaleng.2019.03.146 |
[36] | Chung Y, Kim M S. Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles[J]. Energ. Convers. Manage., 2019, 196(15): 105-116. https://doi.org/10.1016/j.enconman.2019.05.083 |
[37] | Rao Z H, Qian Z, Kuang Y, Li Y M. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Appl. Therm. Eng., 2017, 123: 1514-1522. https://doi.org/10.1016/j.applthermaleng.2017.06.059 |
[38] | Yang W, Zhou F, Liu Y C, Xu S, Chen X. Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery[J]. Appl. Therm. Eng., 2021, 188: 116649. https://doi.org/10.1016/j.applthermaleng.2021.116649 |
[39] | Qi W J, Lan P, Yang J X, Chen Y, Zhang Y M, Wang G J, Peng F, Hong J C. Multi-U-Style micro-channel in liquid cooling plate for thermal management of power batteries[J]. Appl. Therm. Eng., 2024, 256(1): 123984. https://doi.org/10.1016/j.applthermaleng.2024.123984 |
[40] | Li S, Wang C, Shen Q. Numerical study on thermal performance of cold plates with leaf type channels for lithium-ion batteries[J]. Int. J. Nume.r Method H, 2023, 33(10): 3519-3534. https://doi.org/10.1108/HFF-05-2023-0256 |
[41] | Qian Z, Li Y M, Rao Z H. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling[J]. Energ. Convers. Manage., 2016, 126(15): 622-631. https://doi.org/10.1016/j.enconman.2016.08.063 |
[42] | Sheng L, Su L, Zhang H, Li K, Fang Y D, Ye W, Fang Y. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger[J]. Int. J. Heat Mass Tran., 2019, 141: 658-668. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.033 |
[43] | Zhou H B, Zhou F, Wang Q, Wang Q Z, Song Z B. Thermal management of cylindrical Lithium-ion battery based on a liquid cooling method with half-helical duct[J]. Appl. Therm. Eng., 2019, 162(5): 114257. https://doi.org/10.1016/j.applthermaleng.2019.114257 |
[44] | Wang H T, Tao T, Xu J, Mei X S, Liu X Y, Gou P. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries[J]. Appl. Therm. Eng., 2020, 178: 115591. https://doi.org/10.1016/j.applthermaleng.2020.115591 |
[45] | Gao R J, Fan Z H, Liu S T. A gradient channel-based novel design of liquid-cooled battery thermal management system for thermal uniformity improvement[J]. J. Energy Storage, 2022, 48: 114014. https://doi.org/10.1016/j.est.2022.104014 |
[46] | Luo W M, Li H N, Chu T Y, Chen J, Li C C, Huang S M, Wu W X, Lv Y F. A numerical study of battery thermal management system with square spiral ring-shaped liquid cooling plate[J]. Them. Sci. Eng. Prog., 2023, 45(1): 104014. https://doi.org/10.1016/j.tsep.2023.102120 |
[47] | Wang Y C, Xu X B, Liu Z W, Kong J Z, Zhai Q W, Hossam Zakaria, Wang Q Z, Zhou F, Wei H Y. Optimization of liquid cooling for prismatic battery with novel cold plate based on butterfly-shaped channel[J]. J. Energy Storage, 2023, 73: 109161. https://doi.org/10.1016/j.est.2023.109161 |
[48] | Sui Z G, Lin H S, Sun Q, Dong K J, Wu W. Multi-objective optimization of efficient liquid cooling-based battery thermal management system using hybrid manifold channels[J]. Appl. Energy, 2024, 371(1): 123766. https://doi.org/10.1016/j.apenergy.2024.123766 |
[49] | Lv Y F, Yang X Q, Zhang G Q. Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles[J]. Appl. Therm. Eng.: Design, processes, equipment, economics, 2020, 179: 115747. https://doi.org/10.1016/j.applthermaleng.2020.115747 |
[50] | Zhao C G, Li Y F, Liu Y C, Zhu D H, Ma M P, Yu W. Polyurethane foam skeleton-based phase change hydrogel for efficient battery thermal management with favorable antivibration performance[J]. ACS Appl. Mater. Interfaces, 2023, 15(42): 49653-49664. https://doi.org/10.1021/acsami.3c11570 |
[51] | Najafi K H, Jaliliantabar F, Abdullah A A. Parametric investigation of battery thermal management system with phase change material, metal foam, and fins; utilizing CFD and ANN models[J]. Appl. Therm. Eng., 2024, 247: 123080. https://doi.org/10.1016/j.applthermaleng.2024.123080 |
[52] | Mohammadian S K, Zhang Y. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. J. Power Sources, 2015, 273(1): 431-439. https://doi.org/10.1016/j.jpowsour.2014.09.110 |
[53] | Jiang G W, Huang J H, Fu Y S, Gao M, Liu M C. Thermal optimization of composite phase change material/ expanded graphite for Li-ion battery thermal management[J]. Appl. Therm. Eng., 2016: 1119-1125. https://doi.org/10.1016/j.applthermaleng.2016.07.197 |
[54] | Hussain A, Tso C Y, Chao C Y H. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite[J]. Energy, 2016, 115: 209-218. https://doi.org/10.1016/j.energy.2016.09.008 |
[55] | Pan M Q, Lai W L. Cutting copper fiber/paraffin composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery[J]. Renew. Energ., 2017, 114: 408-422. https://doi.org/10.1016/j.renene.2017.07.004 |
[56] | Wang Z W, Zhang H Y, Xia X. Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure[J]. Int. J. Heat Mass Tran., 2017, 109: 958-970. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.057 |
[57] | Zou D Q, Ma X F, Liu X S, Zheng P J, Hu Y P. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery[J]. Int. J. Heat Mass Tran., 2018, 120: 33-41. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.024 |
[58] | Buonomo B, Ercole D, Manca O, Menale F. Thermal cooling behaviors of lithium-ion batteries by metal foam with phase change materials[J]. Energy Procedia, 2018, 148: 1175-1182. https://doi.org/10.1016/j.egypro.2018.08.024 |
[59] | Lazrak A, Fourmigué, Jean-Franois, Robin J F. An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations[J]. Appl. Therm. Eng., 2018, 1289(5): 20-32. https://doi.org/10.1016/j.applthermaleng.2017.08.172 |
[60] | Weng G W, Ouyang D X, Yang X Q, Chen M Y, Zhang G Q, Wang J. Optimization of the internal fin in a phase-change-material module for battery thermal management[J]. Appl. Therm. Eng., 2019, 167: 114698. https://doi.org/10.1016/j.applthermaleng.2019.114698 |
[61] | Choudhari V G, Dhoble A S, Panchal S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization[J]. Int. J. Heat Mass Tran., 2020, 163: 120434. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120434 |
[62] | Zhang W C, Liang Z C, Ling G Z, Huang L S. Influence of phase change material dosage on the heat dissipation performance of the battery thermal management system[J]. J. Energy Storage, 2021, 41: 102849. https://doi.org/10.1016/j.est.2021.102849 |
[63] | Ling Z Y, Li S M, Cai C Y, Lin S, Fang X M, Zhang Z G. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability[J]. Appl. Therm. Eng., 2021, 193(5): 117002. https://doi.org/10.1016/j.applthermaleng.2021.117002 |
[64] | Rajan J T, Jayapal V S, Krishna M J. Analysis of battery thermal management system for electric vehicles using 1-tetradecanol phase change material[J]. Sustain. Energy Techn., 2022, 51: 101943. https://doi.org/10.1016/j.seta.2021.101943 |
[65] | Huang P F, Feng R L, Tang Z Y, He Y Y, Peng D Z, Eric Li, Wei M Y, He Z C, Bai Z H. Exploring the use of 3D graphene sponge composited phase change material for improved thermal performance in battery thermal management systems[J]. Appl. Therm. Eng., 2023, 235: 121389. https://doi.org/10.1016/j.applthermaleng.2023.121389 |
[66] | He R Q, Fang M, Zhou J D, Fei H, Yang K. Enhancement of battery thermal management effect by a novel MOF based composite phase change material[J]. Appl. Therm. Eng., 2024, 257: 124257. https://doi.org/10.1016/j.applthermaleng.2024.124257 |
[67] | Zhou G, Huang Q, Zhang Q, Niu C X, Lu H H, Yang S Q, Liu Y, Wei Z K, Li S L, Kong Y. Thermal insulation phase-change hydrogel with enhanced mechanical properties for inhibiting thermal runaway propagation in lithium-ion battery module[J]. J. Energy Storage, 2024, 102: 114102. https://doi.org/10.1016/j.est.2024.114102 |
[68] | Li S, Cheng Y, Yang P G. Numerical analysis on the thermal management of phase change material with fins for lithium-ion batteries[J]. Int. J. Numer. Method H, 2024, 34(3): 1170-1188. https://doi.org/10.1108/HFF-08-2023-0482 |
[69] | Ling Z Y, Wang F X, Fang X M, Gao X N, Zhang Z G. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Appl. Energy, 2015, 148: 403-409. https://doi.org/10.1016/j.apenergy.2015.03.080 |
[70] | Huang H F, Wang H, Gu J Q, Wu Y Q. High-dimensional model representation-based global sensitivity analysis and the design of a novel thermal management system for lithium-ion batteries[J]. Energ. Convers. Manage., 2019, 190: 54-72. https://doi.org/10.1016/j.enconman.2019.04.013 |
[71] | Hekmat S, Molaeimanesh G R. Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes: An experimental investigation[J]. Appl. Therm. Eng., 2019, 166(5): 114759. https://doi.org/10.1016/j.applthermaleng.2019.114759 |
[72] | Yang W, Zhou F, Zhou H B, Wang Q Z, Kong J Z. Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling[J]. Appl. Therm. Eng., 2020, 175: 115331. https://doi.org/10.1016/j.applthermaleng.2020.115331. |
[73] | Zhuang Y J, Chen T H, Chen J T, Li J B, Guan M T, Chen Y N. Thermal uniformity performance of a hybrid battery thermal management system using phase change material and cooling plates arrayed in the manner of honeycomb[J]. Them. Sci. Eng. Prog., 2021, 26(1): 101094. https://doi.org/10.1016/j.tsep.2021.101094 |
[74] | Qin P, Liao M R, Mei W X, Sun J H, Wang Q S. The experimental and numerical investigation on a hybrid battery thermal management system based on forced-air convection and internal finned structure[J]. Appl. Therm. Eng., 2021, 195: 117212. https://doi.org/10.1016/j.applthermaleng.2021.117212 |
[75] | Wang R, Liang Z, Souri M, ,M.N. Esfahani, M. Jabbari. Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method[J]. Int. J. Heat Mass Tran., 2022, 183: 122095. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122095 |
[76] | Zhao L S, Li W, Wang G Y, Cheng W M, Chen M Y. A novel thermal management system for lithium-ion battery modules combining direct liquid-cooling with forced air-cooling[J]. Appl. Therm. Eng., 2023, 232: 120992. https://doi.org/10.1016/j.applthermaleng.2023.120992 |
[77] | Liu Z K, Xu G Q, Xia Y G, T S. Numerical study of thermal management of pouch lithium-ion battery based on composite liquid-cooled phase change materials with honeycomb structure[J]. J. Energy Storage, 2023, 70(15): 108001. https://doi.org/10.1016/j.est.2023.108001 |
[78] | Lu D, Cui N X, Zhou J W, Li C L. Hybrid cooling system with phase change material and liquid microchannels to prevent thermal runaway propagation within lithium-ion battery packs[J]. Appl. Therm. Eng., 2024, 247: 123118. https://doi.org/10.1016/j.applthermaleng.2024.123118 |
[1] | 郭家林, 李妮妮, 郑鹏. 高体积比容量二氧化锡颗粒嵌入碳包覆介孔氧化亚硅棒锂离子电池负极研究[J]. 电化学(中英文), 2025, 31(2): 2410171-. |
[2] | Alexandra Kuriganova, Nina Smirnova. 调控锡氧化物基材料功能特性的新见解[J]. 电化学(中英文), 2025, 31(1): 2408261-. |
[3] | 左东旭, 李培超. 基于电化学-热-力耦合模型的快速充电下锂离子电池的老化特性分析[J]. 电化学(中英文), 2024, 30(9): 2402061-. |
[4] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[5] | 朱瑞杰, 李泽辰, 张伟, 奈須滉, 小林弘明, 松井雅樹. 全固态钠离子电池:次世代电池竞赛中的领先竞争者[J]. 电化学(中英文), 2024, 30(12): 2415002-. |
[6] | 侯博文, 何龙, 冯旭宁, 张伟峰, 王莉, 何向明. 胺类添加剂对NCM811‖SiC电池热失控抑制效果研究[J]. 电化学(中英文), 2023, 29(8): 2211141-. |
[7] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[8] | 陈思, 郑淞生, 郑雷铭, 张叶涵, 王兆林. 水热法制备锂电池Si@C负极材料的工艺优化研究[J]. 电化学(中英文), 2022, 28(8): 2112221-. |
[9] | 王京玥, 王睿, 王诗琦, 王立帆, 詹纯. 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学(中英文), 2022, 28(8): 2112131-. |
[10] | 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善[J]. 电化学(中英文), 2022, 28(5): 2108121-. |
[11] | 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制[J]. 电化学(中英文), 2022, 28(2): 2108431-. |
[12] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[13] | 朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学(中英文), 2022, 28(12): 2219003-. |
[14] | 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展[J]. 电化学(中英文), 2022, 28(11): 2219007-. |
[15] | 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||