[1] |
Faraji G, Besharati M K, Mosavi M, Kashanizadeh H. Experimental and finite element analysis of parameters in manufacturing of metal bellows[J]. Int. J. Adv. Manuf. Technol., 2007, 38(7-8): 641-648. https://doi.org/10.1007/s00170-007-1122-9
|
[2] |
Igi S, Katayama H, Kawahara M. Evaluation of mechanical behavior of new type bellows with two-directional convolutions[J]. Nucl. Eng. Des., 2000, 197(1-2): 107-114. https://doi.org/10.1016/S0029-5493(99)00260-5
|
[3] |
K. Kowal, J.Detuccia, J. Y. Josefowicz, C. Laird, G. C. Farringto. In situ atomic force microscopy observations of the corrosion behavior of aluminum‐copper alloys[J]. J. Electrochem. Soc., 1996, 143(8): 2471-2481. https://doi.org/10.1149/1.1837033
|
[4] |
Rynders R M, Paik C H, Ke R, Alkire R C. Use of in situ atomic force microscopy to image corrosion at inclusions[J]. J. Electrochem. Soc., 1994, 141 (6): 1439-1445. https://doi.org/10.1149/1.2054943
|
[5] |
Wang B, Lan H X, Lei B B. Analysis on fracture toughness of the l360QS/N08825 bimetallic composite pipe welded joint[J]. Adv. Mater. Sci. Eng., 2019, 2019: 1-13. https://doi.org/10.1155/2019/2983506
|
[6] |
Zhang S X, Xie F Q, Li X M, Luo J H, Su G G, Zhu L X, Chen Q G. Failure analysis of the leakage in girth weld of bimetal composite pipe[J]. Eng. Fail. Anal., 2023, 143: 106917. https://doi.org/10.1016/j.engfailanal.2022.106917
|
[7] |
Kim H J, Jeon S H, Kim S T, Lee I S, Park Y S, Kim K T, Kim Y S. Investigation of the sensitization and intergranular corrosion of tube-to-tubesheet welds of hyper duplex stainless steel using an electrochemical reactivation method[J]. Corros. Sci., 2014, 87: 60-70. https://doi.org/10.1016/j.corsci.2014.06.005
|
[8] |
Boag A, Taylor R J, Muster T H, Goodman N, McCulloch D, Ryan C, Rout B, Jamieson D, Hughes A E. Stable pit formation on AA2024-T3 in a NaCl environment[J]. Corros. Sci., 2010, 52(1): 90-103. https://doi.org/10.1016/j.corsci.2009.08.043
|
[9] |
Boag A, Hughes A E, Glenn A M, Muster T H, McCulloch D. Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles[J]. Corros. Sci., 2011, 53(1): 17-26. https://doi.org/10.1016/j.corsci.2010.09.009
|
[10] |
A.M. Glenn, T.H. Muster, C. Luo, X. Zhou, G.E. Thompson, A. Boag, A.E. Hughes. Corrosion of AA2024-T3 Part III: Propagation[J]. Corros. Sci., 2011, 53(1): 40-50. https://doi.org/10.1016/j.corsci.2010.09.035
|
[11] |
Sharland S M. A mathematical model of crevice and pitting corrosion-II. The mathematical solution[J]. Corros. Sci., 1988, 28(6): 621-630. https://doi.org/10.1016/0010-938X(88)90028-5
|
[12] |
Sharland S M, Tasker P W. A mathematical model of crevice and pitting corrosion-I. The physical model[J]. Corros. Sci., 1988, 28(6): 603-620. https://doi.org/10.1016/0010-938X(88)90027-3
|
[13] |
Sharland S M. A review of the theoretical modeling of crevice and pitting corrosion[J]. Corros. Sci., 1987, 27(3): 289-323. https://doi.org/10.1016/0010-938X(87)90024-2
|
[14] |
Sharland S M, Jackson C P, Diver A J. A finite-element model of the propagation of corrosion crevices and pits[J]. Corros. Sci., 1989, 29(9): 1149-1166. https://doi.org/10.1016/0010-938X(89)90051-6
|
[15] |
Frankel G S, Li T, Scully J R. Perspective-localized corrosion: passive film breakdown vs pit growth stability[J]. J. Electrochem. Soc, 2017, 164(4): C180-C181. https://doi.org/10.1149/2.1381704jes
|
[16] |
Mai W, Soghrati S, Buchheit R G. A phase field model for simulating the pitting corrosion[J]. Corros. Sci., 2016, 110: 157-166. https://doi.org/10.1016/j.corsci.2016.04.001
|
[17] |
Wang H T, Han E H. Computational simulation of corrosion pit interactions under mechanochemical effects using a cellular automaton/finite element model[J]. Corros. Sci., 2016, 103: 305-311. https://doi.org/10.1016/j.corsci.2015.11.034
|
[18] |
Fatoba O O, Leiva-Garcia R, Lishchuk S V, Larrosa N O, Akid R. Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach[J]. Corros. Sci., 2018, 137: 83-97. https://doi.org/10.1016/j.corsci.2018.03.029
|
[19] |
Cao X F, Hu X J. The investigation of micro-galvanic corrosion of SAF 2205 duplex stainless steel based on numerical simulation model and immersion test[J]. Corros. Sci., 2022, 207: 110601. https://doi.org/10.1016/j.corsci.2022.110601
|
[20] |
Deshpande K B. Numerical modeling of micro-galvanic corrosion[J]. Electrochim. Acta, 2011, 56(4): 1737-1745. https://doi.org/10.1016/j.electacta.2010.09.044
|
[21] |
Liu J, Liu Y, Li L Y, Li X, Yang S F, Geng Y H, Liu F Y. Springback analysis of thin-walled stainless steel bellow in hydroforming[J]. Adv. Mat. Res., 2015, 1095: 855-858. https://doi.org/10.4028/www.scientific.net/AMR.1095.855
|
[22] |
Hao Z L, Luo J T, Jin Y.B, Wei W, Liu L. Failure analysis of corrugated metal hose under ultimate repeated bending process[J]. Eng. Fail. Anal., 2020, 109: 104295. https://doi.org/10.1016/j.engfailanal.2019.104295
|
[23] |
Wang M Y, Yan M, Yang C Y, Liu Y, Huang H G. A study on the evolution mechanism of small diameter thin-walled stainless steel bellows during a bending process[J]. Eng. Fail. Anal., 2023, 152: 107462. https://doi.org/10.1016/j.engfailanal.2023.107462
|
[24] |
Guo H S, Wang L, Yin J M, Yao C G, Zhang C X, Luo J T. Finite element simulation prediction of repeated bending failure zone of roll-welded bellows based on an equivalent welding model[J]. Eng. Fail. Anal., 2023, 151: 107371. https://doi.org/10.1016/j.engfailanal.2023.107371
|
[25] |
Li Z H, Tian W F, Wang J M, Yan J H, Zhang L, Wang X X. Simulation analysis of three-dimensional finite element model about the corrosion defect of pipeline[C]// Proceedings Of 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Changsha, Peoples R China, 01-03, November, 2019: 1105-1111. https://doi.org/10.1109/icemi46757.2019.9101473
|
[26] |
Chen M C, Wen Q Q. Simulation of corrosion process for structure with the cellular automata method[C]// 2nd International Conference on Civil Engineering and Materials Science (ICCEMS) Seoul, South Korea,, 26-28 May, 2017, 216: 012012. https://doi.org/10.1088/1757-899X/216/1/012012
|
[27] |
Zhang Y D, Wong R C K. Effect of corrosion on buried pipe responses under external load: Experimental and numerical study[J]. Tunn. Underdr. Sp. Tech., 2023, 132: 104934. https://doi.org/10.1016/j.tust.2022.104934
|
[28] |
Dai M. In situ mathematically simulation for CO2 internal corrosion in wet natural gas gathering pipelines system by HYSYS[J]. Eng. Fail. Anal., 2021, 122: 105265. https://doi.org/10.1016/j.engfailanal.2021.105265
|
[29] |
Guan X R, Zhang D L, Wang J J, Jin Y H, Li Y. Numerical and electrochemical analyses on carbon dioxide corrosion of X80 pipeline steel under different water film thicknesses in NACE solution[J] Nat. Gas Sci. Eng., 2017, 37: 199-216. https://doi.org/10.1016/j.jngse.2016.11.047
|
[30] |
Yin L T, Jin Y, Leygraf C, Pan J S. A FEM model for investigation of micro-galvanic corrosion of Al alloys and effects of deposition of corrosion products[J]. Electrochim. Acta, 2016, 192: 310-318. https://doi.org/10.1016/j.electacta.2016.01.179
|
[31] |
Fattah-alhosseini A, Golozar M A, Saatchi A, Raeissi K. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels[J]. Corros. Sci., 2010, 52(1): 205-209. https://doi.org/10.1016/j.corsci.2009.09.003
|
[32] |
Krawiec H, Vignal V, Akid R. Numerical modelling of the electrochemical behaviour of 316L stainless steel based upon static and dynamic experimental microcapillary-based techniques[J]. Electrochim. Acta, 2008, 53(16): 5252-5259. https://doi.org/10.1016/j.electacta.2008.02.063
|
[33] |
Walton J C, Cragnolino G, Kalandros S K. A numerical model of crevice corrosion for passive and active metals[J]. Corros. Sci., 1996, 38(1): 1-18. https://doi.org/10.1016/0010-938X(96)00107-2
|
[34] |
Sun W, Wang L D, Wu T T, Liu G C. An arbitrary lagrangian-eulerian model for modelling the time-dependent evolution of crevice corrosion[J]. Corros. Sci., 2014, 78: 233-243. https://doi.org/10.1016/j.corsci.2013.10.003
|
[35] |
Heppner K L, Evitts R W, Postlethwaite J. Prediction of the crevice corrosion incubation period of passive metals at elevated temperatures: part ii — model verification and simulation[J]. Can. J. Chem. Eng., 2002, 80(5): 857-864. https://doi.org/10.1002/cjce.5450800509
|
[36] |
Xia D H, Deng C M, Chen Z G, Li T S, Hu W B. Modeling localized corrosion propagation of metallic materials by peridynamics: progresses and challenges[J]. Acta. Metall. Sin., 2022, 58(9): 1094-1107. https://doi.org/10.11900/0412.1961.2022.00249
|
[37] |
Gomes da Silva M J, Fragoso H A P, Barrio R C A G, Cardoso J L. Stress corrosion of an austenitic stainless steel expansion joint, a case study[J]. Eng. Fail. Anal., 2019, 97: 300-310. https://doi.org/10.1016/j.engfailanal.2019.01.021
|
[38] |
Dolgikh O, Bastos A C, Oliveira A, Dan C, Deconinck J. Influence of the electrolyte film thickness and NaCl concentration on the oxygen reduction current on platinum[J]. Corros. Sci., 2016, 102: 338-347. https://doi.org/10.1016/j.corsci.2015.10.025
|