欢迎访问《电化学(中英文)》期刊官方网站,今天是 分享到:

电化学(中英文) ›› 2022, Vol. 28 ›› Issue (8): 2112131.  doi: 10.13208/j.electrochem.211213

所属专题: “下一代二次电池”专题文章

• 论文 • 上一篇    下一篇

一步固相法合成锂离子电池高镍层状正极材料

王京玥, 王睿, 王诗琦, 王立帆*(), 詹纯*()   

  1. 北京科技大学冶金与生态工程学院储能科学与工程系, 北京 100083
  • 收稿日期:2021-12-13 修回日期:2022-01-11 出版日期:2022-08-28 发布日期:2022-03-04
  • 通讯作者: 王立帆,詹纯 E-mail:wanglifanustb@163.com;zhanchun@ustb.edu.cn

Facile One-Step Solid-State Synthesis of Ni-Rich Layered Oxide Cathodes for Lithium-Ion Batteries

Jing-Yue Wang, Rui Wang, Shi-Qi Wang, Li-Fan Wang*(), Chun Zhan*()   

  1. Department of Energy Storage Science and Technology, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2021-12-13 Revised:2022-01-11 Published:2022-08-28 Online:2022-03-04
  • Contact: Li-Fan Wang,Chun Zhan E-mail:wanglifanustb@163.com;zhanchun@ustb.edu.cn

摘要:

高镍层状正极材料因其比容量高进而满足电动汽车的续航要求,是锂离子电池中占主导地位的正极材料之一。通常,商业化的高镍层状氧化物是由共沉淀前驱体合成的,而在共沉淀过程中需要对温度、 pH、 搅拌速率等条件的精确控制,以确保镍、钴和锰等阳离子的原子级混合。本文采用了简单的一步固相法成功合成了超高镍含量的层状氧化物材料。通过使用与目标产物具有相似层状结构的前驱体氢氧化镍,成功合成了LiNiO2和LiNixCoyO2 (x = 0.85, 0.9, 0.95; x + y = 1),其电化学性能可与共沉淀前驱体制备的高镍材料相媲美。通过XRD和XPS测试证实了Co掺杂到LiNiO2中,并抑制了高镍氧化物中的锂镍混排。掺杂剂Co在提高高镍材料的放电容量、倍率性能和循环性能方面具有明显的优势。一步固相法为未来制备下一代高性能超高镍锂离子正极材料提供了一种简单有效制备方法。

关键词: 锂离子电池, 高镍层状氧化物, 一步固相法, 镍酸锂

Abstract:

Nickel-rich layered oxide is one of the dominate cathode materials in the lithium ion batteries, due to its high specific energy density meeting the range requirement of the electric vehicles. Typically, the commercial Ni-rich layered oxides are synthesized from co-precipitated precursors, while precision control is required in the co-precipitation process to ensure the atomic level mixing of the cations such as Ni, Co and Mn, et.al. In this work, a one-step solid-state method was successfully applied to synthesize the Ni-rich layered oxide materials with ultra-high Ni content. By choosing the nickel hydroxides as the precursor with layered structure similar to the targeting product, we successfully synthesized LiNiO2 (LNO) and LiNixCoyO2(x = 0.85, 0.9, 0.95; x + y = 1) with the electrochemical performance comparable to NCM prepared from precipitated precursors. It was confirmed by XRD and XPS that Co is doped into LNO and suppresses the Li+/Ni2+ mixing in Ni-rich oxides. The Co dopant exhibits a noticeable advantage in improving the discharge capacity, rate performance and cycle performance. This work provides some perspective that the one-step solid-state method is a promising approach to prepare high-energy ultrahigh-Ni layered oxide cathodes.

Key words: lithium-ion batteries, Ni-rich layered oxides, one-step solid-state method, LiNiO2