[1] |
Chen Z H, Qin Y, Amine K, Sun Y K. Role of surface coating on cathode materials for lithium-ion batteries[J]. J. Mater. Chem., 2010, 20(36): 7606-7612.
doi: 10.1039/c0jm00154f
URL
|
[2] |
Kim H R, Woo S G, Kim J H, Cho W, Kim Y J. Capacity fading behavior of Ni-rich layered cathode materials in Li-ion full cells[J]. J. Electroanal. Chem., 2016, 782: 168-173.
doi: 10.1016/j.jelechem.2016.10.032
URL
|
[3] |
Li W D, Song B H, Manthiram A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chem. Soc. Rev., 2017, 46(10): 3006-3059.
doi: 10.1039/c6cs00875e
pmid: 28440379
|
[4] |
Andre D, Kim S J, Lamp P, Lux S F, Maglia F, Paschos O, Stiaszny B. Future generations of cathode materials: An automotive industry perspective[J]. J. Mater. Chem. A, 2015, 3(13): 6709-6732.
doi: 10.1039/C5TA00361J
URL
|
[5] |
Evertz M, Horsthemke F, Kasnatscheew J, Borner M, Winter M, Nowak S. Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM111) in lithium ion full cells by using the total reflection X-ray fluorescence technique[J]. J. Power Sources, 2016, 329: 364-371.
doi: 10.1016/j.jpowsour.2016.08.099
URL
|
[6] |
Zheng J M, Xiao J, Zhang J G. The roles of oxygen non-stoichiometry on the electrochemical properties of oxide-based cathode materials[J]. Nano Today, 2016, 11(5): 678-694.
doi: 10.1016/j.nantod.2016.08.011
URL
|
[7] |
Jung R, Metzger M, Maglia F, Stinner C, Gasteiger H A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries[J]. J. Electrochem. Soc., 2017, 164(7): A1361-A1377.
doi: 10.1149/2.0021707jes
URL
|
[8] |
Sun H H, Manthiram A. Impact of microcrack generation and surface degradation on a nickel-rich layered LiNi0.9Co0.05Mn0.05O2 cathode for lithium-ion batteries[J]. Chem. Mat., 2017, 29(19): 8486-8493.
doi: 10.1021/acs.chemmater.7b03268
URL
|
[9] |
Zhang Q Y, Su Y F, Chen L, Lu Y, Bao L Y, He T, Wang J, Chen R J, Tan J, Wu F. Pre-oxidizing the precursors of nickel-rich Cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements[J]. J. Power Sources, 2018, 396: 734-741.
doi: 10.1016/j.jpowsour.2018.06.091
URL
|
[10] |
Jo C H, Cho D H, Noh H J, Yashiro H, Sun Y K, Myung S T. An effective method to reduce residual lithium compounds on Ni-rich LiNi0.6Co0.2Mn0.2O2 active material using a phosphoric acid derived Li3PO4 nanolayer[J]. Nano Res., 2015, 8(5): 1464-1479.
doi: 10.1007/s12274-014-0631-8
URL
|
[11] |
Meng K, Wang Z X, Guo H J, Li X H, Wang D. Improving the cycling performance of LiNi0.8Co0.1Mn0.1O2 by surface coating with Li2TiO3[J]. Electrochim. Acta, 2016, 211: 822-831.
doi: 10.1016/j.electacta.2016.06.110
URL
|
[12] |
Chen S, He T, Su Y F, Lu Y, Ban L Y, Chen L, Zhang Q Y, Wang J, Chen R J, Wu F. Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode for lithium-ion batteries[J]. ACS Appl. Mater. Inter., 2017, 9(35): 29732-29743.
doi: 10.1021/acsami.7b08006
URL
|
[13] |
Woo S W, Myung S T, Bang H, Kim D W, Sun Y K. Improvement of electrochemical and thermal properties of LiNi0.8Co0.1Mn0.1O2 positive electrode materials by multiple metal (Al, Mg) substitution[J]. Electrochim. Acta, 2009, 54(15): 3851-3856.
doi: 10.1016/j.electacta.2009.01.048
URL
|
[14] |
Dixit M, Markovsky B, Aurbach D, Major D T. Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles[J]. J. Electrochem. Soc., 2017, 164(1): A6359-A6365.
doi: 10.1149/2.0561701jes
URL
|
[15] |
Wu F, Liu N, Chen L, Su Y F, Tan G Q, Bao L Y, Zhang Q Y, Lu Y, Wang J, Chen S, Tan J. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability[J]. Nano Energy, 2019, 59: 50-57.
doi: 10.1016/j.nanoen.2019.02.027
URL
|
[16] |
Jamil S, Wang G, Yang L, Xie X, Cao S, Liu H, Chang B B, Wang X Y. Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification[J]. J. Mater. Chem. A, 2020, 8(40): 21306-21316.
doi: 10.1039/D0TA07965K
URL
|
[17] |
Zhao Z W, Liu Y, Luo B, Shen J X, Wang C H, Zhang J F, Cheng L, Xiao Z M, Ming L, Zhang B, Ou X. Slower capacity/voltage degradation of surface engineered LiNi0.92Co0.05Mn0.03O2 cathode for lithium-ion batteries[J]. Appl. Surf. Sci., 2021, 570: 151017.
doi: 10.1016/j.apsusc.2021.151017
URL
|
[18] |
Yang H, Yang B, Zhou L, Jin Y, Wang J, Hu X B, Li G. One-step synthesis of WO3 coating-modified LiNi0.8Co0.15Al0.05O2 cathode material with long cycling stability for lithium-ion batteries[J]. Ionics, 2022, 28(4): 1537-1545.
doi: 10.1007/s11581-021-04404-3
|
[19] |
Becker D, Borner M, Nolle R, Diehl M, Klein S, Rodehorst U, Schmuch R, Winter M, Placke T. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries[J]. ACS Appl. Mater. Inter., 2019, 11(20): 18404-18414.
doi: 10.1021/acsami.9b02889
|
[20] |
Zeng Y W, He J H. Surface structure investigation of LiNi0.8Co0.2O2 by AlPO4 coating and using functional electrolyte[J]. J. Power Sources, 2009, 189(1): 519-521.
doi: 10.1016/j.jpowsour.2008.10.131
URL
|
[21] |
Zheng J M, Kan W H, Manthiram A. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8-xCo0.1Mn0.1+xO2 (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries[J]. ACS Appl. Mater. Inter., 2015, 7(12): 6926-6934.
doi: 10.1021/acsami.5b00788
URL
|
[22] |
Wang F, Zhang Y, Zou J Z, Liu W J, Chen Y P. The structural mechanism of the improved electrochemical performances resulted from sintering atmosphere for LiNi0.5Co0.2Mn0.3O2 cathode material[J]. J. Alloys Compd., 2013, 558: 172-178.
doi: 10.1016/j.jallcom.2013.01.091
URL
|
[23] |
Zhang S. Characterization of high tap density LiNi1/3Co1/3Mn1/3O2 cathode material synthesized via hydroxide co-precipitation[J]. Electrochim. Acta, 2007, 52(25): 7337-7342.
doi: 10.1016/j.electacta.2007.06.015
URL
|
[24] |
Li L J, Li X H, Wang Z X, Guo H J, Yue P, Chen W, Wu L. A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery[J]. Powder Technol., 2011, 206(3): 353-357.
doi: 10.1016/j.powtec.2010.09.010
URL
|