电化学(中英文) ›› 2023, Vol. 29 ›› Issue (10): 211118. doi: 10.13208/j.electrochem.211118
所属专题: “电催化和燃料电池”专题文章
收稿日期:
2021-11-18
修回日期:
2021-12-16
接受日期:
2021-12-28
出版日期:
2023-10-28
发布日期:
2022-01-10
通讯作者:
*Tel: (86)18904083770, E-mail: 基金资助:
Si-Miao Liu, Jing-Jiao Zhou, Shi-Jun Ji*(), Zhong-Sheng Wen
Received:
2021-11-18
Revised:
2021-12-16
Accepted:
2021-12-28
Published:
2023-10-28
Online:
2022-01-10
摘要:
以ZIF-67为前驱体,采用异原子掺杂、高温热处理等方法制备了含有多种过渡金属、非金属粒子的多孔碳材料作为锌-空气电池催化剂。通过SEM、XRD、XPS和电化学方法对催化剂进行物理化学表征和催化性能测试,最后组装成全电池进行充放电性能实验。结果表明,制得的FeNi-CoP/NC的ORR半波电位达到了0.83 V,高于商用的Pt/C催化剂;OER电流密度在10 mA·cm-2时过电位为290 mV并可平稳地保持12 h,显示了良好的催化活性与稳定性。全电池性能测试显示其峰值功率密度较高为150 mW·cm-2,在3 mA·cm-2电流密度下保持了0.6 V的较窄电势间隙。
刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118.
Si-Miao Liu, Jing-Jiao Zhou, Shi-Jun Ji, Zhong-Sheng Wen. Preparation and Electrocatalytic Performance of FeNi-CoP/NC Bifunctional Catalyst[J]. Journal of Electrochemistry, 2023, 29(10): 211118.
[1] |
Shi Q, Liu Q, Zheng Y P, Dong Y Q, Wang L, Liu H T, Yang W Y. Controllable construction of bifunctional CoxP@N,P-doped carbon electrocatalysts for rechargeable zinc-air Batteries[J]. Energy Environ. Mater., 2022, 5(2): 515-523.
doi: 10.1002/eem2.v5.2 URL |
[2] |
Lu X F, Chen Y, Wang S B, Gao S Y, Lou X W. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries[J]. Adv. Mater., 2019, 31(39): 1902339.
doi: 10.1002/adma.v31.39 URL |
[3] |
Xu M N, Guo H, Zhang T T, Zhang J Y, Wang X Q, Yang W. High-performance zeolitic imidazolate frameworks derived three-dimensional Co3S4/polyaniline nanocomposite for supercapacitors[J]. J. Energy Storage, 2021, 35: 102303.
doi: 10.1016/j.est.2021.102303 URL |
[4] | Lin H, Wu Y J, Li J T, Zhou Y. One-Pot Synthesis of Fe2O3@Fe-N-C oxygen reduction electrocatalyst and its performance for zinc-air battery[J]. J. Electrochem, 2021, 27(4): 366-376. |
[5] |
Tan Y Y, Zhang Z Y, Lei Z, Wu W, Zhu W B, Cheng N C, Mu S C. Thiourea-zeolitic imidazolate framework-67 assembly derived Co-CoO nanoparticles encapsulated in N, S codoped open carbon shell as bifunctional oxygen electrocatalyst for rechargeable flexible solid Zn-air batteries[J]. J. Power Sources, 2020, 473: 228570.
doi: 10.1016/j.jpowsour.2020.228570 URL |
[6] |
Chen Y Q, Huang J L, Chen Z R, Shi C G, Yang H Z, Tang Y C, Cen Z H, Liu S H, Fu R W, Wu D C. Molecular engineering toward high-crystallinity yet high-surface-area porous carbon nanosheets for enhanced electrocatalytic oxygen reduction[J]. Adv. Sci., 2021, 9(3): 2103477.
doi: 10.1002/advs.v9.3 URL |
[7] | Liu S H, Huang J L, Tang Y C, Wu D C. Controllable preparation and functionalization strategies of novel polymer-based porous carbon materials[J]. APS., 2021, 52(7): 679-686. |
[8] |
Wang J Y, Cui C, Lin R B, Xu C H, Wang J, Li Z Q. Hybrid cobalt-based electrocatalysts with adjustable compositions for electrochemical water splitting derived from Co2+-loaded MIL-53(Fe) particles[J]. Electrochim. Acta, 2018, 286: 397-405.
doi: 10.1016/j.electacta.2018.08.046 URL |
[9] |
Huang C, Li H H, Liu F, Liu E Q, Yang W J, Luo W P. Metalloporphyrin-immobilization MOFs derived metal-nitrogen-carbon catalysts for effective electrochemical oxygen reduction[J]. J. Solid State Chem., 2020, 292: 121671.
doi: 10.1016/j.jssc.2020.121671 URL |
[10] | Lin X D, Tang Y C, Su Q F, Liu S H, Wu D C. Hierarchical porous carbon materials: structure design, functional modification and new energy devices applications[J]. CTESC Journal., 2020, 71(6): 2586-2598. |
[11] |
Lai Q X, Zhao Y X, Liang Y Y, He J P, Chen J H. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction[J]. Adv. Funct. Mater., 2016, 26(45): 8334-8344.
doi: 10.1002/adfm.v26.45 URL |
[12] |
Zhang X, Chen A, Zhong M, Zhang Z H, Zhang X, Zhou Z, Bu X H. Metal-organic frameworks (MOFs) and MOF-derived materials for energy storage and conversion[J]. Electrochem. Energy Rev., 2019, 2(1): 29-104.
doi: 10.1007/s41918-018-0024-x |
[13] |
Li X R, Yang X C, Xue H G, Pang H, Xu Q. Metal-organic frameworks as a platform for clean energy applications[J]. EnergyChem, 2020, 2(2): 100027.
doi: 10.1016/j.enchem.2020.100027 URL |
[14] |
Liu S H, Wang Z Y, Zhou S, Yu F J, Yu M Z, Chiang C Y, Zhou W Z, Zhao J J, Qiu J S. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution[J]. Adv. Mater., 2017, 29(31): 1700874.
doi: 10.1002/adma.v29.31 URL |
[15] |
Liu Z, Yu X, Xue H G, Feng L G. A nitrogen-doped CoP nanoarray over 3D porous Co foam as an efficient bifunctional electrocatalyst for overall water splitting[J]. J. Mater. Chem. A, 2019, 7(21): 13242-13248.
doi: 10.1039/C9TA03201K URL |
[16] |
Liu M J, Li J H. Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen[J]. ACS Appl. Mater. Interfaces, 2016, 8(3): 2158-2165.
doi: 10.1021/acsami.5b10727 URL |
[17] |
Liu Q, Tian J Q, Cui W, Jiang P, Cheng N Y, Asiri A M, Sun X P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution[J]. Angew. Chem. Int. Ed., 2014, 53(26): 6710-6714.
doi: 10.1002/anie.201404161 pmid: 24845625 |
[18] |
Li L, Xie W X, Chen J, Yang J. ZIF-67 derived P/Ni/Co/NC nanoparticles as highly efficient electrocatalyst for oxygen reduction reaction (ORR)[J]. J. Solid State Chem., 2018, 264: 1-5.
doi: 10.1016/j.jssc.2018.04.035 URL |
[19] |
Zhu J, Zheng X, Wang J, Wu Z X, Han L L, Lin R Q, Xin H L L, Wang D L. Structurally ordered Pt-Zn/C Series nanoparticles as efficient anode catalysts for formic acid electrooxidation[J]. J. Mater. Chem. A, 2015, 3(44): 22129-22135.
doi: 10.1039/C5TA05699C URL |
[20] |
You B, Jiang N, Sheng M L, Gul S, Yano J, Sun Y J. High-performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks[J]. Chem. Mat., 2015, 27(22): 7636-7642.
doi: 10.1021/acs.chemmater.5b02877 URL |
[21] |
Zhang Y F, Su Q, Xu W J, Cao G Z, Wang Y P, Pan A Q, Liang S Q. A confined replacement synthesis of bismuth nanodots in MOF derived carbon arrays as binder-free anodes for sodium-ion batteries[J]. Adv. Sci., 2019, 6(16): 1900162.
doi: 10.1002/advs.v6.16 URL |
[22] |
Jiang B C, Li Z Z. MOF-derived Co, Ni, Mn co-doped N-enriched hollow carbon for efficient hydrogen evolution reaction catalysis[J]. J. Solid State Chem., 2021, 295: 121912.
doi: 10.1016/j.jssc.2020.121912 URL |
[23] |
Liu K, Wang J A, Zheng H F, Sun X D, Yang Z M, Man J Z, Wang X Y, Sun J C. Direct synthesis of tin spheres/nitrogen-doped porous carbon composite by self-formed template method for enhanced lithium storage[J]. J. Mater. Sci. Technol., 2022, 104: 88-97.
doi: 10.1016/j.jmst.2021.06.054 |
[24] |
Huang X K, Xu X P, Li C, Wu D F, Cheng D J, Cao D P. Vertical CoP nanoarray wrapped by N,P-doped carbon for hydrogen evolution reaction in both acidic and alkaline conditions[J]. Adv. Energy Mater., 2019, 9(22): 1803970.
doi: 10.1002/aenm.v9.22 URL |
[25] |
Liu P B, Gao S, Wang Y, Huang Y, Wang Y, Luo J H. Core-shell CoNi@graphitic carbon decorated on B,N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation[J]. ACS Appl. Mater. Interfaces, 2019, 11(28): 25624-25635.
doi: 10.1021/acsami.9b08525 URL |
[26] |
Zhou W J, Wu X J, Cao X H, Huang X, Tan C L, Tian J, Liu H, Wang J Y, Zhang H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution[J]. Energy Environ. Sci., 2013, 6(10): 2921-2924.
doi: 10.1039/c3ee41572d URL |
[27] | Reddy G K, Kim S J, Dong J H, Smirniotis P G, Jasinski J B. Long-term WGS stability of Fe/Ce and Fe/Ce/Cr catalysts at high and low steam to CO ratios-XPS and Mössbauer spectroscopic study[J]. Appl. Catal. A-Gen., 2012, 415: 101-110. |
[28] |
Bi Y M, Cai Z, Zhou D J, Tian Y, Zhang Q, Zhang Q, Kuang Y, Li Y P, Sun X M, Duan X. Understanding the incorporating effect of Co2+/Co3+in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction[J]. J. Catal., 2018, 358: 100-107.
doi: 10.1016/j.jcat.2017.11.028 URL |
[29] |
Mao H, Guo X, Fu Y L, Yang H R, Zhang Y, Zhang R, Song X M. Enhanced electrolytic oxygen evolution by the synergistic effects of trimetallic FeCoNi boride oxides immobilized on polypyrrole/reduced graphene oxide[J]. J. Mater. Chem. A, 2020, 8(4): 1821-1828.
doi: 10.1039/C9TA10756H URL |
[1] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[2] | 李渊, 陈妙迎, 卢帮安, 张佳楠. 高活性和耐久性非铂氧还原催化剂的研究进展[J]. 电化学(中英文), 2023, 29(1): 2215002-. |
[3] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[4] | 倪静, 施兆平, 王显, 王意波, 吴鸿翔, 刘长鹏, 葛君杰, 邢巍. 低铱酸性氧析出电催化剂的研究进展[J]. 电化学(中英文), 2022, 28(9): 2214010-. |
[5] | 周澳, 郭伟健, 王月青, 张进涛. 焦耳热快速合成双功能电催化剂用于高效水分解[J]. 电化学(中英文), 2022, 28(9): 2214007-. |
[6] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[7] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
[8] | 王雪, 张丽, 刘长鹏, 葛君杰, 祝建兵, 邢巍. 碱性介质中非贵金属氧还原催化剂的结构调控进展[J]. 电化学(中英文), 2022, 28(2): 2108501-. |
[9] | 袁会芳, 张越, 翟兴吾, 胡立兵, 葛桂贤, 王刚, 于锋, 代斌. 氮掺杂碳原位锚定铜纳米颗粒用于高效氧还原反应催化剂[J]. 电化学(中英文), 2021, 27(6): 671-680. |
[10] | 林华, 吴艺津, 李君涛, 周尧. 一锅法制备Fe2O3@Fe-N-C氧还原电催化剂及其锌-空气电池的性能研究[J]. 电化学(中英文), 2021, 27(4): 366-376. |
[11] | 李文杰, 田东旭, 杜红, 燕希强. ORR催化剂Nim@Pt1Aun-m-1 (n = 19, 38, 55, 79; m = 1, 6, 13, 19)的密度泛函研究[J]. 电化学(中英文), 2021, 27(4): 357-365. |
[12] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
[13] | 张焰峰, 肖菲, 陈广宇, 邵敏华. 基于非贵金属氧还原催化剂的质子交换膜燃料电池性能[J]. 电化学(中英文), 2020, 26(4): 563-572. |
[14] | 徐明俊, 刘杰, 葛君杰, 刘长鹏, 邢巍. 长春应化所金属氮碳氧还原催化剂的研究进展[J]. 电化学(中英文), 2020, 26(4): 464-473. |
[15] | 徐能能, 乔锦丽. 锌-空气电池双功能催化剂研究进展[J]. 电化学(中英文), 2020, 26(4): 531-562. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||