[1] |
Feng H L(冯海兰), Liu Y F(刘亚飞), Chen Y B(陈彦彬). Preparation and performance of lithium-rich manganese layered mterials 0.6Li[Li1/3Mn2/3]O2·0.4LiNixMnyCo1-x-yO2(x < 0.6, y > 0)[J]. J. Electrochem.(电化学), 2020, 21(5): 480-487.
|
[2] |
Park K S, Song C H, Stephan A M, Jeong S K, Nahm K S, Oh S M, Kim Y G. Influence of solvents on the synjournal and electrochemical properties of Li[Li1/5Ni1/10Co1/5Mn1/2]O2 for the applications in lithium-ion batteries[J]. J. Mater. Sci., 2006, 41: 7628-7635.
doi: 10.1007/s10853-006-0855-4
URL
|
[3] |
Yang X Q, McBreen J, Yoon W S, Grey C P. Crystal struc-ture changes of LiMn0.5Ni0.5O2 cathode materials during charge and discharge studied by synchrotron based in situ XRD[J]. Electrochem. Commun., 2002, 4(8): 649-654.
doi: 10.1016/S1388-2481(02)00406-X
URL
|
[4] |
Gummow R, De Kock A, Thackeray M Improved capacity retention in rechargeable 4 V lithium-manganese oxide (spinel) cells[J]. Solid State Ionics, 1994, 69(1): 59-67.
doi: 10.1016/0167-2738(94)90450-2
URL
|
[5] |
Muhammad S, Kim H, Kim Y, Kim D, Song J H, Yoon J, Park J H, Ahn S J, Kang S H, Thackeray M M, Yoon W S. Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries[J]. Nano Energy, 2016, 21: 172-184.
doi: 10.1016/j.nanoen.2015.12.027
URL
|
[6] |
Oishi M, Yogi C, Watanabe I, Ohta T, Orikasa Y, Uchimoto Y, Ogumi Z. Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2[J]. J. Power Sources, 2015, 276: 89-94.
doi: 10.1016/j.jpowsour.2014.11.104
URL
|
[7] |
Yu L Y, Qiu W H, F, Huang J Y, Lian F, Liu W, Kang X L, Huang J Y. Comparative study of layered 0.65Li[Li1/3Mn2/3]O2·0.35LiMO2 (M = Co, Ni1/2Mn1/2 and Ni1/3Co1/3Mn1/3) cathode materials[J]. Mater. Lett., 2008, 62(17): 3010-3013.
doi: 10.1016/j.matlet.2008.01.133
URL
|
[8] |
Zhou L Z(周罗增), Xu Q J(徐群杰), Tang W P(汤卫平), Jin X(靳雪), Yuan X L(袁小磊). Research progress of Mn-based lithium-rich cathode materials for Li-ion batteries[J]. J. Electrochem.(电化学), 2015, 21(2): 138-144.
|
[9] |
Wu Y, Ma C, Yang J H, Li Z C, Allard L F, Liang C D, Chi M F. Probing the initiation of voltage decay in Li-rich layered cathode materials at atomic scale[J]. J. Mater. Chem. A, 2015, 3(10): 5385-5391.
doi: 10.1039/C4TA06856D
URL
|
[10] |
Li B A, Yan H J, Ma J, Yu P R, Xia D G, Huang W F, Chu W S, Wu Z Y. Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: Towards better electrochemical performance[J]. Adv. Funct. Mater., 2014, 24, (32): 5112-5118.
|
[11] |
Song B H, Liu H W, Liu Z W, Xiao P F, Lai M O, Lu L. High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries[J]. Sci. Rep., 2013, 3: 3094.
doi: 10.1038/srep03094
URL
|
[12] |
Fell C R, Qian D N, Carroll K J, Chi M F, Jones J L, Meng Y S. Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle[J]. Chem. Mater., 2013, 25(9): 1621-1629.
doi: 10.1021/cm4000119
URL
|
[13] |
Yu X Q, Lyu Y C, Gu L, Wu H M, Bak S M, Zhou Y N, Amine K, Ehrlich S N, Li H, Nam K W, Yang X Q. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials[J]. Adv. Energy Mater., 2014, 4(5): 1300950.
doi: 10.1002/aenm.201300950
URL
|
[14] |
Manthiram A, Knight J C, Myung S T, Oh S M, Sun Y K. Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives[J]. Adv. Energy Mater., 2015, 6(1): 1501010.
doi: 10.1002/aenm.201501010
URL
|
[15] |
Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries[J]. J. Mater. Chem., 2007, 17(30): 3112-3125.
doi: 10.1039/b702425h
URL
|
[16] |
Mohanty D, Kalnaus S, Meisner R A, Rhodes K J, Li J L, Payzant E A, Wood D L, Daniel C. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction[J]. J. Power Sources, 2013, 229: 239-248.
doi: 10.1016/j.jpowsour.2012.11.144
URL
|
[17] |
Shen S Y(沈重亨), Shen C H(沈守宇), Lin Z(林舟), Zheng X M(郑小美), Su H(苏航), Huang L(黄令), Li J T(李君涛), Sun S G(孙世刚). Aqueous solution evaporation route synjournal and phase structural research of the Li-rich cathode Li1.23Ni0.09Co0.12Mn0.56O2 by in-situ XRD[J]. J. Electrochem.(电化学), 2013, 19(6): 537-543.
|
[18] |
Boulineau A, Simonin Y, Colin J F, Canevet E, Daniel L, Patoux S. Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy[J]. Chem. Mater., 2012, 24(18): 3558-3566.
doi: 10.1021/cm301140g
URL
|
[19] |
Ito A, Li D C, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2[J]. J. Power Sources, 2010, 195(2): 567-573.
doi: 10.1016/j.jpowsour.2009.07.052
URL
|
[20] |
Gu M, Belharouak I, Zheng J M, Wu H M, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J, Wang C M. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. ACS Nano, 2013, 7(1): 760-767.
doi: 10.1021/nn305065u
URL
|
[21] |
Song B H, Liu H W, Liu Z W, Xiao P F, Lai M O, Lu L. High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries[J]. Sci. Rep., 2013, 3: 3094.
doi: 10.1038/srep03094
URL
|
[22] |
Lu Z, MacNeil D D, Dahn J R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries[J]. Electrochem. Solid State Lett., 2001, 4(11): A191-A194.
doi: 10.1149/1.1407994
URL
|
[23] |
Zheng J M, Myeong S J, Cho W R, Yan P F, Xiao J, Wang C M, Cho J, Zhang J G. Li-and Mn-rich cathode materials: challenges to commercialization[J]. Adv. Energy Mater., 2017, 7(6): 1601284.
doi: 10.1002/aenm.v7.6
URL
|