电化学(中英文) ›› 2022, Vol. 28 ›› Issue (6): 2104531. doi: 10.13208/j.electrochem.210453
邹浩斌1, 谭超力1, 熊伟1, 席道林2, 刘彬云3,*()
收稿日期:
2022-02-28
修回日期:
2022-06-09
出版日期:
2022-06-28
发布日期:
2022-06-12
通讯作者:
刘彬云
E-mail:beston@ghtech.com
Hao-Bin Zou1, Chao-Li Tan1, Wei Xiong1, Dao-Lin Xi2, Bin-Yun Liu3,*()
Received:
2022-02-28
Revised:
2022-06-09
Published:
2022-06-28
Online:
2022-06-12
Contact:
Bin-Yun Liu
E-mail:beston@ghtech.com
摘要:
酸性镀铜是积层法多层板制造工艺中的关键技术,是实现基板内部任意层间互连与高密度互连的重要技术方法。本文介绍了酸性镀铜添加剂的主要研究重点、场景化电镀技术开发以及相关应用技术研究,主要使用计时电位法与线性扫描伏安法研究了不同结构类型整平剂在铜电沉积过程中的电流-电压关系曲线,用于定性判断添加剂的吸、脱附情况及阴极极化能力,结合凝胶色谱技术研究自主合成聚合物包括整平剂与抑制剂的分子量与分布系数,并概括了已经成熟商品化的不同场景下的填孔电镀技术类型及其优势,同时针对填孔电镀工艺中常见的应用技术的问题进行了简要阐述,以供业界参考与借鉴。
邹浩斌, 谭超力, 熊伟, 席道林, 刘彬云. 酸性镀铜添加剂开发及应用技术[J]. 电化学(中英文), 2022, 28(6): 2104531.
Hao-Bin Zou, Chao-Li Tan, Wei Xiong, Dao-Lin Xi, Bin-Yun Liu. Introduction of Development and Application Technology of Organic Additives for Acid Copper Electroplating[J]. Journal of Electrochemistry, 2022, 28(6): 2104531.
[1] |
Xiang J, Wang C, Chen Y M, Wang S X, Hong Y, Zhang H W, Gong L J, He W. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates[J]. Appl. Surf. Sci., 2017, 411: 82-90.
doi: 10.1016/j.apsusc.2017.02.223 URL |
[2] |
Chen Y M, He W, Chen X M, Wang C, Tao Z H, Wang S X, Zhou G Y, Moshrefi-Torbati M. Plating uniformity of bottom-up copper pillars and patterns for IC substrates with additive-assisted electrodeposition[J]. Electrochim. Acta, 2014, 120: 293-301.
doi: 10.1016/j.electacta.2013.12.112 URL |
[3] |
Moffat T P, Josell D. Electrochemical processing of interconnects[J]. J. Electrochem. Soc., 2013, 160(12): Y7-Y10.
doi: 10.1149/2.043312jes URL |
[4] |
Dou W P, Yen M Y, Liao S Z, Chiu Y D, Huang H C. Filling mechanism in microvia metallization by copper electroplating[J]. Electrochim. Acta, 2008, 53: 8228-8237.
doi: 10.1016/j.electacta.2008.06.042 URL |
[5] |
Moffat T P, Wheeler D, Kim S K, Josell D. Curvature enhanced adsorbate coverage model for electrodeposition[J]. J. Electrochem. Soc., 2006, 153(2): C127-C132.
doi: 10.1149/1.2165580 URL |
[6] |
Yang S D, Thacker Z, Allison E, Bennett M, Cole N, Pinhero P J. Electrodeposition of copper for three-dimensional metamaterial fabrication[J]. ACS Appl. Mater. Interfaces, 2017, 9(46): 40921-40929.
doi: 10.1021/acsami.7b04721 URL |
[7] |
Mendez J, Akolkar R, Landau U. Polyether suppressors enabling copper metallization of high aspect ratio interconnects[J]. J. Electrochem. Soc., 2009, 156(11): D474-D479.
doi: 10.1149/1.3211849 URL |
[8] |
Yang H, Krause R, Scheunert C, Liske R, Uhlig B, Preusse A, Dianat A, Bobeth M, Cuniberti G. Copper electroplating with polyethylene glycol: Part II. experimental analysis and determination of model parameters[J]. J. Electrochem. Soc., 2018, 165(2): D13-D22.
doi: 10.1149/2.0081802jes URL |
[9] |
Gallaway J W, West A C. PEG, PPG, and their triblock copolymers as suppressors in copper electroplating[J]. J. Electrochem. Soc., 2008, 155(10): D632-D639.
doi: 10.1149/1.2958309 URL |
[10] |
Lee M H, Lee Y, Oh J H, Kim Y G, Cho S K, Kim J J. Microvia filling with copper electroplated with quaternary ammonium-based leveler: the evaluation of convection-dependent adsorption behavior of the leveler[J]. J. Electrochem. Soc., 2017, 164(14): D1051-D1055.
doi: 10.1149/2.0121802jes URL |
[11] |
Zheng L, He W, Zhu K, Wang C, Wang S X, Hong Y, Chen Y M, Zhou G Y, Miao H, Zhou J Q, Investigation of poly (1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochim. Acta, 2018, 283: 560-567.
doi: 10.1016/j.electacta.2018.06.132 URL |
[12] |
Braun T M, John J, Jayaraju N, Josell D, Moffat T P. Simulating the influence of supporting electrolyte concentration on copper electrodeposition in microvias[J]. J. Electrochem. Soc., 2022, 169(1): 012502.
doi: 10.1149/1945-7111/ac4845 URL |
[13] |
Huang S M, Liu C W, Dou W P, Effect of convection-dependent adsorption of additives on microvia filling in an acidic copper plating solution[J]. J. Electrochem. Soc., 2012, 159(3): D135-D141.
doi: 10.1149/2.010203jes URL |
[14] |
Walker M L, Richter L J, Moffat T P. Potential dependence of competitive adsorption of PEG, Cl-, and SPS/MPS on Cu[J]. J. Electrochem. Soc., 2007, 154(5): D277-D282.
doi: 10.1149/1.2710200 URL |
[15] |
Cao H Y, Hang T, Ling H Q, Gao L M, Li M. Linear sweep voltammetric study on the copper electrodeposition of though-silicon-vias[J]. J. Electrochem. Soc., 2014, 161(6): D349-D352.
doi: 10.1149/2.096406jes URL |
[16] | Xiao N, Pang K N, Wang Z W, Li D Y, Li N. Structural effect of polymers on their microvia filling performance as suppressors during the copper electroplating[J]. Int. J. Electrochem. Sci., 2017, 12: 1453-1462. |
[17] |
Chen T C, Tsai Y L, Hsu C F, Dow W P, Hashimoto Y. Effects of brighteners in a copper plating bath on throwing power and thermal reliability of plated through holes[J]. Electrochim. Acta, 2016. 212: 572-582.
doi: 10.1016/j.electacta.2016.07.007 URL |
[18] | Feng K S, DeCesare B, Yu M, DeSalvo D, Watkowski J. Electroplated copper filling of through holes on varying substrate thickness[J]. IEEE, 2014, Catalog Number: CFP1459B-ART. |
[19] | Lefebvre M, Barstad L, Gomez L. Copper electroplating for HDI and IC substrate through hole fill[C]. IEEE, 2010:1-4. |
[20] |
de Maubeuge H L. Influence of geometric variables on the current distribution uniformity at the edge of parallel plate electrodes[J]. Electrochim. Acta, 2011, 56(28): 10603-10611.
doi: 10.1016/j.electacta.2011.06.074 URL |
[21] |
Liske R, Wehner S, Preusse A, Kuecher P, Bartha J W, Influence of additive coadsorption on copper superfill behavior[J]. J. Electrochem. Soc., 2009, 156(12): H955-H960.
doi: 10.1149/1.3239995 URL |
[22] |
Dou W P, Huang H S, Yen M Y, Chen H H. Roles of chloride ion in microvia filling by copper electrodeposition[J]. J. Electrochem. Soc., 2005, 152(2): C77-C88.
doi: 10.1149/1.1849935 URL |
[23] | Nagy Z, Blaudeau J P, Hung N C, Curtiss L A, Zurawski D J. Chloride ion catalysis of the copper deposition reaction[J]. J. Electrochem. Soc., 1995, 142(6): L84-L89. |
[24] |
Garcia-Cardona E, Wong E H, Barkey D P. NMR spectral studies of interactions between the accelerants SPS and MPS and copper chlorides[J]. J. Electrochem. Soc., 2011, 158(3): D143-D148.
doi: 10.1149/1.3529937 URL |
[25] |
Hayashi T, Matsuura S, Kondo K, Kataoka K, Nishimura K, Yokoi M, Saito T, Okamoto N. Role of cuprous ion in copper electrodeposition acceleration[J]. J. Electrochem. Soc., 2015, 162(6): D199-D203.
doi: 10.1149/2.0471506jes URL |
[26] |
Choe S, Kim M J, Kim H C, Cho S K, Ahn S H, Kim S K, Kim J J. Degradation of bis(3-sulfopropyl) disulfide and its influence on copper electrodeposition for feature filling[J]. J. Electrochem. Soc., 2013, 160(12): D3179-D3185.
doi: 10.1149/2.032312jes URL |
[27] |
Frank A, Bard A J. The decomposition of the sulfonate additive sulfopropyl sulfonate in acid copper electroplating chemistries[J]. J. Electrochem. Soc., 2003, 150(4): C244-C250.
doi: 10.1149/1.1557081 URL |
[28] |
Park D J, Han M, Park M J, Lee J Y, Choe S. Brightener breakdown at the insoluble anode by active chlorine species during Cu electrodeposition[J]. J. Ind. Eng. Chem., 2022, 106: 198-204.
doi: 10.1016/j.jiec.2021.10.027 URL |
[29] | West M J, Wang Q, Bailey T H. Advanced metrology and control of copper electrochemical deposition I: The decomposition chemistry of the accelerator SPS[J]. ECS Transactions, 2007, 2(6): 131-148. |
[30] |
Gabrielli C, Mocoteguy P, Perrot H, Zdunek A, Nieto-Sanz D. Influence of the anode on the degradation of the additives in the damascene process for copper deposition[J]. J. Electrochem. Soc., 2007, 154(3): D163-D169.
doi: 10.1149/1.2426897 URL |
[31] |
Moçotéguy P, Gabrielli C, Perrot H, Zdunek A, Sanz D N. Influence of the anode and the accelerator on copper bath aging in the damascene process[J]. J. Electrochem. Soc., 2006, 153(12): G1086-G1098.
doi: 10.1149/1.2357726 URL |
[1] | 高博远, 冷文华. 氧化铜光电化学分解水反应速率方程[J]. 电化学(中英文), 2024, 30(8): 2312111-. |
[2] | 李家俊, 张伟彬, 刘鑫宇, 杨静蕾, 尹易, 杨泽钦, 马雪婧. 二硫化钼和碳纳米管复合物电极用于盐差能转换[J]. 电化学(中英文), 2024, 30(6): 2307121-. |
[3] | 陈露露, 李浩冉, 刘维祎, 王伟. 锂离子电池正极材料原位漫反射光谱电化学研究[J]. 电化学(中英文), 2024, 30(6): 2314006-. |
[4] | 丁伟杰, 杨春晖, 冯钟涛, 陆仕荣, 程旭. 钯催化电化学烯丙位4-吡啶化反应中的配体作用研究[J]. 电化学(中英文), 2024, 30(5): 2313003-. |
[5] | 李鹏飞, 寇广生, 亓丽萍, 仇友爱. 电化学脱卤氘化研究进展[J]. 电化学(中英文), 2024, 30(5): 2313005-. |
[6] | 揭亮华, 徐海超. 电催化活性亚甲基化合物的环丙烷化反应[J]. 电化学(中英文), 2024, 30(4): 2313001-. |
[7] | 崔苗苗, 韩联欢, 曾兰平, 郭佳瑶, 宋维英, 刘川, 吴元菲, 罗世翊, 刘云华, 詹东平. 单层石墨烯微米尺度图案化和功能化:调控电子传输特性[J]. 电化学(中英文), 2024, 30(3): 2305251-. |
[8] | 梁志豪, 王家正, 王丹, 周剑章, 吴德印. 陷阱态对Ag-TiO2光诱导界面电荷转移的影响:电化学、光电化学和光谱表征[J]. 电化学(中英文), 2023, 29(8): 2208101-. |
[9] | 翟悦晖, 彭逸霄, 洪延, 陈苑明, 周国云, 何为, 王朋举, 陈先明, 王翀. 铜互连电镀中有机添加剂的合成与分析[J]. 电化学(中英文), 2023, 29(8): 2208111-. |
[10] | 谭卓, 李凯旋, 毛秉伟, 颜佳伟. 电化学扫描隧道显微术:以Cu在Au(111)表面初始阶段电沉积为例[J]. 电化学(中英文), 2023, 29(7): 2216003-. |
[11] | 胡琼, 李诗琪, 梁伊依, 冯文星, 骆怡琳, 曹晓静, 牛利. 基于硼酸盐亲和辅助电化学调控ATRP的癌胚抗原超灵敏电化学适体传感研究[J]. 电化学(中英文), 2023, 29(6): 2218001-. |
[12] | 覃晓丽, 詹子颖, Sara Jahanghiri, Kenneth Chu, 张丛洋, 丁志峰. 金属有机框架材料在电化学/电化学发光免疫分析中的应用[J]. 电化学(中英文), 2023, 29(6): 2218003-. |
[13] | 静超, 龙亿涛. 暗场显微镜下的彩色“纳米星”[J]. 电化学(中英文), 2023, 29(6): 2218006-. |
[14] | 张生雅, 姚敏, 王泽, 刘天娇, 张蓉芳, 叶慧琴, 冯彦俊, 卢小泉. 通过扫描光电化学显微镜研究超分子光敏剂-二氧化钛薄膜系统的光诱导电子转移[J]. 电化学(中英文), 2023, 29(6): 2218005-. |
[15] | 陈涛, 许元红, 李景虹. 基于电化学阻抗谱的致病菌检测传感器的研究进展[J]. 电化学(中英文), 2023, 29(6): 2218002-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||