欢迎访问《电化学(中英文)》期刊官方网站,今天是

    “电有机合成、水处理”专题文章

    默认 最新文章 浏览次数
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 对-(β-羟乙基砜)苯胺的电化学合成
    郭浩, 钮东方, 胡硕真, 张新胜
    电化学(中英文)    2021, 27 (5): 498-507.   DOI: 10.13208/j.electrochem.201203
    摘要804)   HTML89)    PDF(pc) (1101KB)(571)    收藏

    本文研究了以对-硝基苯基-羟乙基砜为原料在铅板电极上电化学还原制备对-(β-羟乙基砜)苯胺的反应,探究电流密度、通电量、温度和硫酸浓度对电流效率和产率的影响。在最优条件下(电流密度300 A·m-2,理论通电量6.0 F·mol-1,温度70℃,硫酸浓度1.5 mol·L-1),该反应的电流效率达到92.7%,产率达到93.0%。在该最优条件的基础上向电解液中加入质量分数2.0%的硫酸钛可将产率提升至97.8%,硫酸钛的引入间接缓解了反应后期原料扩散速率慢的问题。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 电解乙酰基吡嗪废水中的硫酸铵制备过硫酸铵的研究
    王怡捷, 钮东方, 张新胜
    电化学(中英文)    2022, 28 (4): 2106101-.   DOI: 10.13208/j.electrochem.210610
    摘要657)   HTML40)    PDF(pc) (4034KB)(505)    收藏

    乙酰基吡嗪是一种重要的香料,也被应用于生物、医药等领域。在生产乙酰基吡嗪的过程中会产生含过硫酸铵、Fe3+、吡嗪及大量硫酸铵的废水。基于此,本研究拟利用电解法将其中的硫酸铵转化为经济效益较高的过硫酸铵。以铂电极为阳极,石墨电极为阴极,首先在无其他组分干扰的情况下对电解法生产过硫酸铵的工艺条件(如阳极液组成、电流密度、温度等)进行了探索,在阳极液(50 g)含37wt%硫酸铵、15wt%硫酸、0.06wt%硫氰酸铵,阴极液含25wt%硫酸,电流密度为8000 A·m-2,阳极液温度为30 oC,通电量为2 A·h的优化条件下,生成过硫酸铵达到15.83wt%时,电流效率高达89.56%。然后探究了废水中Fe3+和吡嗪对电解的影响,并根据乙酰基吡嗪废水的成分配制模拟废水以考察预处理效果。向模拟废水中添加氨水至pH值约为7可使Fe3+浓度降至2.7 mg·L-1。使用硫酸根自由基氧化法降解模拟废水中吡嗪,当过硫酸铵浓度为0.65 mol·L-1时,降解率可达98.43%。最后,以预处理后的乙酰基吡嗪实际废水为阳极液进行电解,电流效率达85.21%。证明了乙酰基吡嗪废水中硫酸铵电解制备过硫酸铵的可行性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. Fe3O4磁性纳米颗粒催化电化学降解土霉素的研究
    应方, 许珊珊, 许燕冰, 梁苗苗, 李剑锋
    电化学(中英文)    2022, 28 (4): 2107141-.   DOI: 10.13208/j.electrochem.210714
    摘要676)   HTML152)    PDF(pc) (4086KB)(344)    收藏

    本研究以Fe3O4作为催化剂,活化过氧化二硫酸盐电化学氧化体系,改善土霉素(OTC)的降解为主要内容。通过场发射扫描电子显微镜(SEM)、 X射线衍射(XRD)表征,证明水热法成功制备了150 nm左右的Fe3O4磁性纳米颗粒。通过对比实验证明,同时加入Fe3O4与施加电流时表现出优秀的OTC降解能力,经证明在过硫酸盐(PDS)浓度为4.0 mmol·L-1,溶液初始pH值为7,电流密度j为30 mA·cm-2, Fe3O4磁性纳米颗粒用量为0.1 g·L-1,初始OTC浓度为70 mg·L-1的条件时,60 min内OTC降解率可达88.75%,一级动力学模拟曲线的速率常数可以达到0.06069。此外, Fe3O4连续循环5次后,依然具有良好的稳定性。Fe3O4与电流的存在分别可以促进SO4 ·-·OH的生成。经自由基猝灭实验证明, SO4 ·-·OH均负责抗生素降解。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 电解耦合臭氧化体系处理酸性废水的氧化效能
    胡泽友, 项丰云, 毛佶强, 丁亚磊, 童少平
    电化学(中英文)    2022, 28 (1): 2104191-.   DOI: 10.13208/j.electrochem.210419
    摘要753)   HTML85)    PDF(pc) (1650KB)(361)    收藏

    建立能有效处理酸性废水的臭氧类高级氧化技术(AOPs-O3)是一个有待解决的难点。已有报道表明,臭氧氧化与电解结合(电解臭氧化,E-O3)可以有效降解中性溶液中的污染物。本文研究了E-O3在酸性溶液中降解乙酸(HAc,臭氧惰性物)的效率,发现E-O3在pH小于3时仍具有较高的氧化效率,如在pH为1.0时处理100 mg·L-1 乙酸溶液2小时后E-O3的效率达到52.2%,而相同条件下电解和臭氧氧化的效率分别只有2.2%和3.5%。尽管酸度增加会降低E-O3的氧化效率,但在pH等于0时其仍有相对较高的氧化效率。芳族化合物苯乙酮在pH等于1.0条件下也能被E-O3有效地降解并矿化。机理解析表明,溶解臭氧或氧气可以从阴极获得电子,从而产生高活性的氧化物种,如羟基自由基。在预处理了一种实际酸性废水中E-O3也具有较好的效率。本研究为酸性废水的有效(预)处理提供了一种新方法。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 电化学合成乙酰基吡嗪
    毛麟, 钮东方, 胡硕真, 张新胜
    电化学(中英文)    2022, 28 (5): 2107061-.   DOI: 10.13208/j.electrochem.210706
    摘要938)   HTML178)    PDF(pc) (1436KB)(705)    收藏

    本文以吡嗪和丙酮酸为原料,在铅电极上电化学活化过硫酸铵得到的硫酸根自由基为氧化剂,首次采用电化学方法合成了乙酰基吡嗪。探究了电流密度、反应物摩尔比、反应物浓度、过硫酸铵、 pH值对乙酰基吡嗪收率的影响,同时在外加硫酸亚铁的条件下探究复合活化法对收率的影响。在最优条件下(电流密度100 A·m-2,丙酮酸浓度0.33 mol·L-1,吡嗪浓度1.00 mol·L-1),该反应的收率为44.12%。该工艺反应条件温和,简单易控,利用“清洁能源”电子代替了过渡金属盐以活化过硫酸铵,因而是一种环境友好的乙酰基吡嗪制备方法,具有广阔的工业化应用前景。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 膜电极电解器电解脱硫废水制备硫酸铵副产氢
    韦聚才, 石霖, 吴旭
    电化学(中英文)    2022, 28 (5): 2112211-.   DOI: 10.13208/j.electrochem.211221
    摘要770)   HTML151)    PDF(pc) (1514KB)(744)    收藏

    从废弃物中回收资源和能量是污染治理的优选途径。本文利用压滤式平板膜电极电解器电解脱硫废水,实现亚硫酸铵资源化为硫酸铵肥料并同步产氢。电解器表现出优良的SO32-催化氧化性能和稳定性。在200 mA·cm-2电流密度下,电压控制在2 V内,SO32-转化率可达9%。每处理1 m3亚硫酸铵脱硫废水,初始废水中HSO3-和SO42-的浓度分别为392 g·L-1和49 g·L-1,可获得0.70 t硫酸铵和2.98 kg氢气,消耗电量137.24 kWh,可创造1302.70元利润。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 基于BP神经网络的电化学还原硝酸盐过程智能控制
    张芯婉, 孟广源, 方立强, 常定明, 李童, 胡锦文, 陈鹏, 刘勇弟, 张乐华
    电化学(中英文)    2023, 29 (12): 211215-.   DOI: 10.13208/j.electrochem.211215
    摘要301)   HTML9)    PDF(pc) (3160KB)(550)    收藏

    电化学还原硝酸盐过程关键在于该废水处理过程中参数的有效控制。基于硝态氮电化学还原的测试数据和各参数间的相关性,得出与出水效果密切相关的四因素,即反应时间、初始浓度、初始pH和电流密度,采用BP神经网络算法建立了电化学法还原硝态氮的预测模型,并验证了模型的准确性。结果表明,4-7-1型BP神经网络网络构型最优,模型预测的去除效果与实测值相吻合,R2为0.9095。利用BP神经网络模型对参数调控,可以优化电化学处理过程:对电流密度进行阶段性调控,在相同处理量下可降低15%的能耗;在水质波动情况下进行电流密度控制,在相同处理时间内可保证出水达标。该研究结果可以为智能控制电化学去除硝态氮的过程提供参考。

    图表 | 参考文献 | 相关文章 | 多维度评价