[1] |
Zhao X Y, Zhao K, Quan X, Chen S, Yu H T, Zhang Z H, Niu J F, Zhang S S. Efficient electrochemical nitrate removal on Cu and nitrogen doped carbon[J]. Chem. Eng. J., 2021, 415: 128958.
doi: 10.1016/j.cej.2021.128958
URL
|
[2] |
Huang J X, Xu J Y, Liu X Q, Liu J, Wang L M. Spatial distribution pattern analysis of groundwater nitrate nitrogen pollution in Shandong intensive farming regions of China using neural network method[J]. Math. Comput. Model., 2011, 54(3-4): 995-1004.
doi: 10.1016/j.mcm.2010.11.027
URL
|
[3] |
WHO. Guidelines for drinking-water quality. 2nd ed. Volume 1: Recommendations[J]. Geneva Switzerland Who, 1993.
|
[4] |
Niu H, Zhang Z F, Wang X T, Wan X H, Shao C, Guo Y Z. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts[J]. Adv. Funct. Mater., 2020, 31(11): 2008533.
doi: 10.1002/adfm.v31.11
URL
|
[5] |
Singh R M, Datta B. Artificial neural network modeling for identification of unknown pollution sources in groundwater with partially missing concentration observation data[J]. Water Resour. Manag., 2007, 21(3): 557-572.
doi: 10.1007/s11269-006-9029-z
URL
|
[6] |
Nolan B T, Fienen M N, Lorenz D L. A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA[J]. J. Hydrol., 2015, 531: 902-911.
doi: 10.1016/j.jhydrol.2015.10.025
URL
|
[7] |
Saleh B A, Kayi H. Prediction of chemical oxygen demand from the chemical composition of wastewater by artificial neural networks[J]. J. Phys. Conf. Ser., 2021, 1818(1): 012035.
doi: 10.1088/1742-6596/1818/1/012035
|
[8] |
Debnath A, Majumder M, Pal M, Das N S, Chattopadhyay K K, Saha B. Enhanced adsorption of hexavalent chromium onto magnetic calcium ferrite nanoparticles: Kinetic, isotherm, and neural network modeling[J]. J. Disper. Sci. Technol., 2016, 37(12): 1806-1818.
doi: 10.1080/01932691.2016.1141100
URL
|
[9] |
Chen Z Q, Wang H C, Chen Z B, Ren N Q, Wang A J, Shi Y, Li X M. Performance and model of a full-scale up-flow anaerobic sludge blanket (UASB) to treat the pharmaceutical wastewater containing 6-APA and amoxicillin[J]. J. Hazard. Mater., 2011, 185(2-3): 905-913.
doi: 10.1016/j.jhazmat.2010.09.106
pmid: 20970923
|
[10] |
Tabatabai-Yazdi F S, Pirbazari A E, Saraei F E K, Gilani N. Construction of graphene based photocatalysts for photocatalytic degradation of organic pollutant and modeling using artificial intelligence techniques[J]. Physica B, 2021, 608: 412869.
doi: 10.1016/j.physb.2021.412869
URL
|
[11] |
Karaboga D, Kaya E. Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey[J]. Artif. Intell. Rev., 2019, 52(4): 2263-2293.
doi: 10.1007/s10462-017-9610-2
|
[12] |
Huang W W, Zhang B G, Li M, Chen N, Feng C P, Zhang Z Y. An electrochemical process intensified by bipolar iron particles for nitrate removal from synthetic groundwater[J]. J. Solid State Electr., 2013, 17(4): 1013-1020.
doi: 10.1007/s10008-012-1956-4
URL
|
[13] |
Xu D, Li Y, Yin L F, Ji Y Y, Niu J F, Yu Y X. Electrochemical removal of nitrate in industrial wastewater[J]. Front. Env. Sci. Eng., 2018, 12(1): 9.
doi: 10.1007/s11783-018-1033-z
|
[14] |
Wang Y T, Wang C H, Li M Y, Yu Y F, Zhang B. Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges[J]. Chem. Soc. Rev., 2021, 50(12): 6720-6733.
doi: 10.1039/D1CS00116G
URL
|
[15] |
Nasr M, Ateia M, Hassan K. Artificial intelligence for greywater treatment using electrocoagulation process[J]. Sep. Sci. Technol., 2016, 51(1): 96-105.
doi: 10.1080/01496395.2015.1062399
URL
|
[16] |
Manokaran P, Saravanathamizhan R, Basha C A, Kannadasan T. Feed-forward back-propagation neural network for the electro-oxidation of distillery effluent[J]. Chem. Eng. Commun., 2014, 201(10): 1404-1416.
doi: 10.1080/00986445.2013.809710
URL
|
[17] |
Moosavi S M, Chidambaram A, Talirz L, Haranczyk M, Stylianou K C, Smit B. Capturing chemical intuition in synthesis of metal-organic frameworks[J]. Nat. Commun., 2019, 10: 539.
doi: 10.1038/s41467-019-08483-9
pmid: 30710082
|
[18] |
Chen J W, Xu J, Wang Y L, Zhang H W, Li X H. Granary rice temperature prediction model based on BP neural[J]. Mod. Electron. Tech., 2021, 44(19): 178-182.
|
[19] |
Song J Q, Li J, Chen G H, Zhang Z J. Influence of pH on denitrification with embedded immobilized technology[J]. China Water & Wastewater, 2019, 35(3): 78-82.
|
[20] |
Luo Y, Yuan W, Luo L Y, Chen M C, Tang J, Wan W L, Fan J Z. Model of PM2.5 concentration prediction based on multivariable hybrid long short-term memory neural network in Changsha[J]. Sci. Technol. Eng., 2021, 21(25): 10967-10975.
|
[21] |
Robissout D, Zaid G, Colombier B, Bossuet L, Habrard A. Online Performance evaluation of deep learning networks for profiled side-channel analysis[J]. International Workshop on Constructive Side-Channel Analysis and Secure Design, 2021, 12244: 200-218.
|
[22] |
Huang W L, Li M, Zhang B G, Feng C P, Lei X H, Xu B. Influence of operating conditions on electrochemical reduction of nitrate in groundwater[J]. Water Environ. Res., 2013, 85(3): 224-231.
pmid: 23581237
|