[1] |
Yan Z K(燕中凯), Liu Y(刘媛), Yue T(岳涛), Yan J(闫骏), Han B J(韩斌杰). Selection of flue gas desulfurization process and prospects of desulfurization technology development[J]. Environ. Eng.(环境工程), 2013, 31(6): 58-61+66.
|
[2] |
Lu B Y(鲁博颖). Discussion on application of flue gas ammonia desulfurization technology[J]. Chem. Fert. Des.(化肥设计), 2021, 59(3): 39-42.
|
[3] |
Gao F(高峰), Qi H M(齐慧敏), Fang X C(方向晨). Research process of the technology of ammonia desulfurization and ammonia decarbonization of flue gas[J]. Contemp. Chem. Ind.(当代化工), 2021, 50(5): 1241-1244.
|
[4] |
Xiao W D(肖文德). The development history and prospects of ultra-low emission advanced ammonia desulfurization technology[J]. Chin. Environ. Prot. Ind.(中国环保产业), 2021, (5): 8-9.
|
[5] |
Dai M(代蒙), Huang B F(黄帮福), Li L(李露), Wang D F(汪德富), Yang Z Y(杨征宇), Luo F(罗枫), Ye F Y(冶富银), Li M(李明). Main influencing factors of ammonium sulfate crystallization in ammonium desulfurization process[J]. Bull. Chin. Silic. Soc.(硅酸盐通报), 2021, 40(2): 505-512.
|
[6] |
Luan H(栾辉), Tang Z H(唐智和), Zhai X J(翟小娟), He W(何为). Problems ammonia process of desulfurization and its countermeasures[J]. Environ. Prot. Oil Gas Fields(油气田环境保护), 2016, 26(6): 29-31+55.
|
[7] |
O′Brien J A, Hinkley J T, Donne S W, Lindquist S E. The electrochemical oxidation of aqueous sulfur dioxide: A critical review of work with respect to the hybrid sulfur cycle[J]. Electrochim. Acta, 2010, 55(3): 573-591.
doi: 10.1016/j.electacta.2009.09.067
URL
|
[8] |
Wei J C, Gu Y Y, Wu X. A desulfurization fuel cell with alkali and sulfuric acid byproducts: A prototype and a model[J]. Sustain. Energ. Fuels, 2021, 5(14): 3666-3675.
|
[9] |
Han J, Cheng H Y, Zhang L W, Fu H B, Chen J M. Trash to treasure: Use flue gas SO2 to produce H2 via a photoelectrochemical process[J]. Chem. Eng. J., 2018, 335: 231-235.
doi: 10.1016/j.cej.2017.10.116
URL
|
[10] |
U.S. Savannah River National Laboratory. Hybid sulfur process refernce design and cost analysis, SRNL-L1200-2008-00002[R]. 2009.
|
[11] |
Chen S, Zhou W, Ding Y N, Zhao G B, Gao J H. Energy-saving cathodic hydrogen production enabled by anodic oxidation of aqueous sodium sulfite solutions[J]. Energy Fuels, 2020, 34(7): 9058-9063.
doi: 10.1021/acs.energyfuels.0c01589
URL
|
[12] |
Márquez-Montes R A, Orozco-Mena R E, Camacho-Dá-vila A A, Pérez-Vega S, Collins-Martínez V H, Ramos-Sánchez V H. Optimization of the electrooxidation of aqueous ammonium sulfite for hydrogen production at near-neutral pH using response surface methodology[J]. Int. J. Hydrog. Energy, 2020, 45(27): 13821-13831.
doi: 10.1016/j.ijhydene.2019.08.213
URL
|
[13] |
Wei J C, Gu Y Y, Wu X. A sulfite/air fuel cell with alkali and sulfuric acid byproducts: Bifunctional electrocatalyst for sulfite oxidation and ORR activity[J]. J. Electrochem. Soc., 2021, 168(6): 064520.
doi: 10.1149/1945-7111/ac0aa3
URL
|
[14] |
Zelinsky A G. Features of sulfite oxidation on gold anode[J]. Electrochim. Acta, 2016, 188: 727-733.
doi: 10.1016/j.electacta.2015.12.064
URL
|
[15] |
Zelinsky A G, Pirogov B Y. Electrochemical oxidation of sulfite and sulfur dioxide at a renewable graphite electrode[J]. Electrochim. Acta, 2017, 231: 371-378.
doi: 10.1016/j.electacta.2017.02.070
URL
|
[16] |
Marquez-Montes R A, Orozco-Mena R E, Lardizabal-Gu-tierrez D, Chavez-Flores D, Lopez-Ortiz A, Ramos-San-chez V H. Sulfur dioxide exploitation by electrochemical oxidation of sulfite in near-neutral pH electrolytes: A kinetics and mechanistic study[J]. Electrochem. Commun., 2019, 104: 106481.
doi: 10.1016/j.elecom.2019.106481
URL
|
[17] |
Bard A J, Faulkner L R. Electrochemical methods: Fundamentals and applications[M]. New York: John Wiley & Sons, Inc., 2000.
|
[18] |
Newman J, Thomas-Alyea K E. Electrochemical systems[M]. Hoboken: John Wiley & Sons, Inc., 2004.
|
[19] |
Skaväs E, Hemmingsen T. Kinetics and mechanism of sulphite oxidation on a rotating platinum disc electrode in an alkaline solution[J]. Electrochim. Acta, 2007, 52(11): 3510-3517.
doi: 10.1016/j.electacta.2006.10.038
URL
|
[20] |
Enache A F, Dan M L, Vaszilcsin N. Electrochemical oxidation of sulphite in neutral media on platinum anode[J]. Int. J. Electrochem. Sci., 2018, 13(5): 4466-4478.
|
[21] |
Pletcher D, Walsh F C. Industrial electrochemistry[M]. Netherlands: Springer, 1993.
|
[22] |
Cheon S, Kim K, Yoon H C, Han J I. Performance of sulfite/feiiiedta fuel cell: Power from waste in flue gas desulfurization process[J]. Chem. Eng. J., 2019, 375: 122008.
doi: 10.1016/j.cej.2019.122008
URL
|
[23] |
Liu S W(刘少武), Qi Y(齐焉), Liu D(刘东), Liu Y P(刘翼鹏). Sulfuric acid work manual[M]. Nanjing: Southeast University Press(东南大学出版社), 2001.
|
[24] |
Steimke J L, Steeper T J, Cólon-Mercado H R, Gorensek M B. Development and testing of a pem SO2-depolarized electrolyzer and an operating method that prevents sulfur accumulation[J]. Int. J. Hydrogen Energy, 2015, 40(39): 13281-13294.
doi: 10.1016/j.ijhydene.2015.08.041
URL
|
[25] |
Staser J A, Weidner J W. Sulfur dioxide crossover during the production of hydrogen and sulfuric acid in a PEM electrolyzer[J]. J. Electrochem. Soc., 2009, 156(7): B836-B841.
doi: 10.1149/1.3129444
URL
|
[26] |
Santasalo-Aarnio A, Virtanen J, Gasik M. SO2 carry-over and sulphur formation in a SO2-depolarized electrolyser[J]. J. Solid State Electrochem., 2016, 20(6): 1655-1663.
doi: 10.1007/s10008-016-3169-8
URL
|
[27] |
Staser J A. Electrochemical generation of hydrogen via the hybrid sulfur process[D]. University of South Carolina: Dissertations & Theses-Gradworks, 2009.
|
[28] |
U.S. Savannah River National Laboratory. Method to prevent sulfur accumulation inside membrane electrode assembly, SRNS-STI-2009-00134[R]. 2009.
|