欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2024, Vol. 30 ›› Issue (5): 2313005.  doi: 10.61558/2993-074X.3442

所属专题: “电有机合成、水处理”专题文章

• 综述 • 上一篇    

电化学脱卤氘化研究进展

李鹏飞, 寇广生, 亓丽萍*(), 仇友爱*()   

  1. 南开大学化学院元素有机化学国家重点实验室,天津 300071
  • 收稿日期:2023-10-29 接受日期:2024-01-05 出版日期:2024-05-28 发布日期:2024-01-15

Recent Advance in Electrochemical Dehalogenative Deuteration

Peng-Fei Li, Guang-Sheng Kou, Li-Ping Qi*(), You-Ai Qiu*()   

  1. State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
  • Received:2023-10-29 Accepted:2024-01-05 Published:2024-05-28 Online:2024-01-15
  • Contact: *Li-Ping Qi, Tel: (86-22)23503627, E-mail address: qiliping@nankai.edu.cn;*You-Ai Qiu, Tel: (86)17502215086, E-mail address: qiuyouai@nankai.edu.cn

摘要:

近年来,含有氘原子的化合物在包括材料和生物医药在内的各个领域中的重要性日益增加,被广泛应用于化学和生物学的机制研究中,将氘原子引入有机化合物已经成为药物分子发展的重要方向之一。同时,在非生物活性物质的活体内氚标记的化合物也发挥了重要作用。自美国食品药品监督管理局(FDA)批准的第一种用于临床治疗的氘化药物问世以来,氘标记的化合物就迅速成为人们关注的焦点,各种有机化合物的氘化方法被广泛开发。其中,卤化物的还原氘化具有高选择性的优势,但是大部分反应策略受到氘源和催化模式的限制。有机电合成作为一种相对绿色的催化模式以及其对氧化还原反应的广泛适应性,电化学卤化物的还原氘化成为替代传统卤-氘原子交换的重要方法之一,它避免了传统方法中过渡金属催化剂、金属试剂及昂贵氘代试剂的使用。近年来卤化物的电化学脱卤氘化得到很快的的发展,电化学脱卤氘化通常仅需要重水作为最廉价易得的氘源就能高效得到高氘代掺入率的产物,这为氘代化合物的合成与发展提供了重要的支撑。本文根据卤化物的类型,综述了电化学条件下芳基卤化物和烷基卤化物还原氘化的最新进展以及其反应机制,有望为未来更为广泛的氘代方法研究以及氘代化合物的研究提供一定的基础.

关键词: 电化学, 氘化, 卤化物, 氘水, 脱卤反应

Abstract:

In recent years, the incorporation of deuterium atoms into organic compounds has emerged as a vital focus in the development of pharmaceutical molecules. This trend is driven by the increasing recognition of the significance of compounds containing deuterium atoms across various domains, including materials and biopharmaceuticals, where they have found widespread applications in mechanistic studies within the realms of chemistry and biology. Meanwhile, organic electrochemistry, as a relatively environmentally friendly catalytic mode with broad adaptability to redox reactions, has emerged as a crucial alternative to traditional halogen-deuterium exchange in the context of the reduction deuteration of halides. This approach circumvents the uses of transition metal catalysts and toxic deuterated reagents which are commonly employed in traditional methods. Notably, electrocatalytic dehalogenation with deuterium incorporation typically relies on heavy water as the deuterium source, ensuring high yields and significant deuterium incorporation. In recent years, electrochemically dehalogenative deuteration of halides has made substantial progress, providing critical support for the synthesis and development of deuterated compounds. This article offers a comprehensive overview of the latest advancements in electrochemical reductive deuteration of both aromatic and alkyl halides, categorizing the progress according to the type of halide and delving into the underlying reaction mechanisms.

Key words: electrochemistry, deuteration, halide, deuterium oxide, dehalogenation