[1] |
Pirenne V, Muriel B, Waser J V. Catalytic enantioselective ring-opening reactions of cyclopropanes[J]. Chem. Rev., 2021, 121(1): 227-263.
|
[2] |
Liu J X, Liu R X, Wei Y, Shi M. Recent developments in cyclopropane cycloaddition reactions[J]. Trends Chem., 2019, 1(8): 779-793.
|
[3] |
Ebner C, Carreira E M. Cyclopropanation strategies in recent total syntheses[J]. Chem. Rev., 2017, 117(18): 11651-11679.
doi: 10.1021/acs.chemrev.6b00798
pmid: 28467054
|
[4] |
Talele T T. The "cyclopropyl fragment" is a versatile player that frequently appears in preclinical/clinical drug molecules[J]. J. Med. Chem., 2016, 59(19): 8712-8756.
pmid: 27299736
|
[5] |
Chen D Y K, Pouwer R H, Richard J A. Recent advances in the total synthesis of cyclopropane-containing natural products[J]. Chem. Soc. Rev., 2012, 41(13): 4631-4642.
doi: 10.1039/c2cs35067j
pmid: 22592592
|
[6] |
Zheng Z B, Cheng W F, Wang L J, Zhu J, Sun X L, Tang Y. Asymmetric catalytic [3+2] annulation ofdonor-acceptorcyclopropane with cyclic ketones: Facile access to enantioenriched1-oxaspiro[4.5]decanes[J]. Chin. J. Chem., 2020, 38(12): 1629-1634.
|
[7] |
Bi X F, Zhang Q C, Gu Z H. Transition-metal-catalyzed carbon-carbon bond activation in asymmetric synthesis[J]. Chin. J. Chem., 2021, 39(5): 1397-1412.
|
[8] |
Ford A, Miel H, Ring A, Slattery C N, Maguire A R, McKervey M A. Modern organic synthesis with alpha-diazocarbonyl compounds[J]. Chem. Rev., 2015, 115(18): 9981-10080.
|
[9] |
Maas G. Ruthenium-catalysed carbenoid cyclopropanation reactions with diazo compounds[J]. Chem. Soc. Rev., 2004, 33(3): 183-190.
doi: 10.1039/b309046a
pmid: 15026823
|
[10] |
Ouyang Y Z, Zhan M, Zhou J, Jiao J, Hao H U, Yamada Y M A, Li P F. Z-bpy,a new c2-symmetric bipyridine ligand and its application in enantioselective copper (I)-catalyzed cyclopropanation of olefins[J]. Chin. J. Chem., 2019, 37(8): 807-810.
|
[11] |
Green S P, Wheelhouse K M, Payne A D, Hallett J P, Miller P W, Bull J A. Thermal stability and explosive hazard assessment of diazo compounds and diazo transfer reagents[J]. Org. Process Res. Dev., 2020, 24(1): 67-84.
doi: 10.1021/acs.oprd.9b00422
pmid: 31983869
|
[12] |
Schilter D. Doing without diazos[J]. Nat. Catal., 2021, 4(5): 347-347.
|
[13] |
Jia M Q, Ma S M. New approaches to the synthesis of metal carbenes[J]. Angew. Chem. Int. Ed., 2016, 55(32): 9134-9166.
doi: 10.1002/anie.201508119
pmid: 27310878
|
[14] |
Ye L W, Zhu X Q, Sahani R L, Xu Y, Qian P C, Liu R S. Nitrene transfer and carbene transfer in gold catalysis[J]. Chem. Rev., 2021, 121(14): 9039-9112.
|
[15] |
Zhang L. A non-diazo approach to α-oxo gold carbenes via gold-catalyzed alkyne oxidation[J]. Acc. Chem. Res., 2014, 47(3): 877-888.
|
[16] |
Zhu D, Chen L F, Fan H L, Yao Q L, Zhu S F. Recent progress on donor and donor-donor carbenes[J]. Chem. Soc. Rev., 2020, 49(3): 908-950.
doi: 10.1039/c9cs00542k
pmid: 31958107
|
[17] |
Moreau B, Charette A B. Expedient synthesis of cyclopropane alpha-amino acids by the catalytic asymmetric cyclopropanation of alkenes using iodonium ylides derived from methyl nitroacetate[J]. J. Am. Chem. Soc., 2005, 127(51): 18014-18015.
pmid: 16366547
|
[18] |
Cao L Y, Luo J N, Yao J S, Wang D K, Dong Y Q, Zheng C, Zhuo C X. Molybdenum-catalyzed deoxygenative cyclopropanation of 1,2-dicarbonyl or monocarbonyl compounds[J]. Angew. Chem. Int. Ed., 2021, 60(28): 15254-15259.
|
[19] |
Fischer D M, Lindner H, Amberg W M, Carreira E M. Intermolecular organophotocatalytic cyclopropanation of unactivated olefins[J]. J. Am. Chem. Soc., 2023, 145(2): 774-780.
doi: 10.1021/jacs.2c11680
pmid: 36607827
|
[20] |
Yuan Y, Yang J, Lei A W. Recent advances in electrochemical oxidative cross-coupling with hydrogen evolution involving radicals[J]. Chem. Soc. Rev., 2021, 50(18): 10058-10086.
doi: 10.1039/d1cs00150g
pmid: 34369504
|
[21] |
Cheng X, Lei A, Mei T S, Xu H C, Xu K, Zeng C. Recent applications of homogeneous catalysis in electrochemical organic synthesis[J]. CCS Chem., 2022, 4: 1120-1152.
|
[22] |
Jie L H, Guo B, Song J S, Xu H C. Organoelectrocatalysis enables direct cyclopropanation of methylene compounds[J]. J. Am. Chem. Soc., 2022, 144(5): 2343-2350.
|
[23] |
Xiong P, Xu H C. Chemistry with electrochemically generated N-centered radicals[J]. Acc. Chem. Res., 2019, 52(12): 3339-3350.
|
[24] |
Zhu L, Xiong P, Mao Z Y, Wang Y H, Yan X M, Lu X, Xu H C. Electrocatalytic generation of amidyl radicals for olefin hydroamidation: Use of solvent effects to enable anilide oxidation[J]. Angew. Chem. Int. Ed., 2016, 55(6): 2226-2229.
doi: 10.1002/anie.201510418
pmid: 26732232
|
[25] |
Hou Z W, Yan H, Song J S, Xu H C. Electrochemical synthesis of (Aza)indolines via dehydrogenative [3+2] annulation: application to total synthesis of (±)-hinckdentine A†[J]. Chin. J. Chem., 2018, 36(10): 909-915.
|
[26] |
Yan H, Hou Z W, Xu H C. Photoelectrochemical C-H alkylation of heteroarenes with organotrifluoroborates[J]. Angew. Chem. Int. Ed., 2019, 58(14): 4592-4595.
doi: 10.1002/anie.201814488
pmid: 30650241
|
[27] |
Huang C, Qian X Y, Xu H C. Continuous-flow electrosynthesis of benzofused S-heterocycles by dehydrogenative C-S cross-coupling[J]. Angew. Chem. Int. Ed., 2019, 58(20): 6650-6653.
doi: 10.1002/anie.201901610
pmid: 30908799
|
[28] |
Cai C Y, Lai X L, Wang Y, Hu H H, Song J, Yang Y, Wang C, Xu H C. Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C-H bonds[J]. Nat. Catal., 2022, 5(10): 943-951.
|
[29] |
Yan H, Song J, Zhu S, Xu H C. Synthesis of acridinium photocatalysts via site-selective C-H alkylation[J]. CCS Chem., 2021, 3: 317-325.
|
[30] |
Liu C K, Lin Y, Cai C, Yuan C C, Fang Z, Guo K. Continuous-flow electro-oxidative coupling of sulfides with activated methylene compounds leading to sulfur ylides[J]. Green Chem., 2021, 23(8): 2956-2961.
|
[31] |
Chen M, Wu Z J, Song J, Xu H C. Electrocatalytic allylic C-H alkylation enabled by a dual-function cobalt catalyst[J]. Angew. Chem. Int. Ed., 2022, 61(14): e202115954.
|
[32] |
Cai C Y, Wu Z J, Liu J Y, Chen M, Song J, Xu H C. Tailored cobalt-salen complexes enable electrocatalytic intramolecular allylic C-H functionalizations[J]. Nat. Commun., 2021, 12(1): 3745.
doi: 10.1038/s41467-021-24125-5
pmid: 34145285
|
[33] |
Qin T, Lv G, Mia H, Guan M, Xu C, Zhang G, Xiong T, Zhang Q. Cobalt-catalyzed asymmetric alkylation of (hetero)arenes with styrenes[J]. Angew. Chem. Int. Ed., 2022, 61(26): e202201967.
|
[34] |
Yin Y N, Ding R Q, Ouyang D C, Zhang Q, Zhu R. Highly chemoselective synthesis of hindered amides via cobalt-catalyzed intermolecular oxidative hydroamidation[J]. Nat. Commun., 2021, 12(1): 2552.
|
[35] |
Ebisawa K, Izumi K, Ooka Y, Kato H, Kanazawa S, Komatsu S, Nishi E, Shigehisa H. Catalyst- and silane-controlled enantioselective hydrofunctionalization of alkenes by cobalt-catalyzed hydrogen atom transfer and radical-polar crossover[J]. J. Am. Chem. Soc., 2020, 142(31): 13481-13490.
doi: 10.1021/jacs.0c05017
pmid: 32648757
|