[1] |
Lelais G, Seebach D. β2-amino acids—syntheses, occurrence in natural products, and components of β-peptides[J]. Pept. Sci., 2004, 76(3): 206-243.
|
[2] |
Seebach D, Overhand M, Kühnle F N M, Martinoni B, Oberer L, Hommel U, Widmer H. β-peptides: Synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a β-hexapeptide in solution and its stability towards pepsin[J]. Helv. Chim. Acta, 1996, 79(4): 913-941.
|
[3] |
Appella D H, Christianson L A, Karle I L, Powell D R, Gellman S H. β-peptide foldamers: robust helix formation in a new family of β-amino acid oligomers[J]. J. Am. Chem. Soc., 1996, 118(51): 13071-13072.
|
[4] |
Seebach D, Abele S, Schreiber J V, Martinoni B, Nussbaum A K, Schild H, Schulz H, Hennecke H, Woessner R, Bitsch F. Biological and pharmacokinetic studies with β-peptides[J]. Chimia, 1998, 52(12): 734-739.
|
[5] |
Podlech J, Seebach D. The arndt-eistert reaction in peptide chemistry: A facile access to homopeptides[J]. Angew. Chem. Int. Ed., 1995, 34(4): 471-472.
|
[6] |
Semmelhack M F, Stauffer R D, Rogerson T D. Nucleophilic aromatic substitution via a new nickel-catalyzed process and via the SRN1 reaction. Improved synthesis of cephalotaxinone[J]. Tetrahedron Lett., 1973, 14(45): 4519-4522.
|
[7] |
Semmelhack M F, Chong B P, Stauffer R D, Rogerson T D, Chong A, Jones L D. Total synthesis of the Cephalotaxus alkaloids. Problem in nucleophilic aromatic substitution[J]. J. Am. Chem. Soc., 1975, 97(9): 2507-2516.
pmid: 1133420
|
[8] |
Satoh T, Kawamura Y, Miura M, Nomura M. Palladium-catalyzed regioselective mono- and diarylation reactions of 2-phenylphenols and naphthols with aryl halides[J]. Angew. Chem. Int. Ed. Engl., 1997, 36(16): 1740-1742.
|
[9] |
Palucki M, Buchwald S L. Palladium-catalyzed α-arylation of ketones[J]. J. Am. Chem. Soc., 1997, 119(45): 11108-11109.
|
[10] |
Hamann B C, Hartwig J F. Palladium-catalyzed direct α-arylation of ketones. rate acceleration by sterically hindered chelating ligands and reductive elimination from a transition metal enolate complex[J]. J. Am. Chem. Soc., 1997, 119(50): 12382-12383.
|
[11] |
Matsubara K, Ueno K, Koga Y, Hara K. Nickel-NHC-catalyzed α-arylation of acyclic ketones and amination of haloarenes and unexpected preferential N-Arylation of 4-aminopropiophenone[J]. J. Org. Chem., 2007, 72(14): 5069-5076.
pmid: 17559270
|
[12] |
Terrett J A, Cuthbertson J D, Shurtleff V W, MacMillan D W C. Switching on elusive organometallic mechanisms with photoredox catalysis[J]. Nature, 2015, 524: 330-334.
|
[13] |
Liu D, Ma H X, Fang P, Mei T S. Nickel-catalyzed thiolation of aryl halides and heteroaryl halides through electrochemistry[J]. Angew. Chem. Int. Ed., 2019, 58(15): 5033-5037.
doi: 10.1002/anie.201900956
pmid: 30735304
|
[14] |
Liu D, Liu Z R, Ma C, Jiao K J, Sun B, Wei L, Lefranc J, Herbert S, Mei T S. Nickel-catalyzed N-arylation of NH-sulfoximines with aryl halides via paired electrolysis[J]. Angew. Chem. Int. Ed., 2021, 60(17): 9444-9449.
|
[15] |
Wei L, Wang Z H, Jiao K J, Liu D, Ma C, Fang P, Mei T S. Esterification of carboxylic acids with aryl halides via the merger of paired electrolysis and nickel catalysis[J]. J. Org. Chem., 2021, 86(22): 15906-15913.
|
[16] |
Wang Z H, Wei L, Jiao K J, Ma C, Mei T S. Nickel-catalyzed decarboxylative cross-coupling of indole-3-acetic acids with aryl bromides by convergent paired electrolysis[J]. Chem. Commun., 2022, 58(59): 8202-8205.
|
[17] |
Liu D, Liu Z R, Wang Z H, Ma C, Herbert S, Schirok H, Mei T S. Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides[J]. Nat. Commun., 2022, 13: 7318.
doi: 10.1038/s41467-022-35073-z
pmid: 36443306
|
[18] |
Espinoza E M, Clark J A, Soliman J, Derr J B, Morales M, Vullev V I. Practical aspects of cyclic voltammetry: How to estimate reduction potentials when irreversibility prevails[J]. J. Electrochem. Soc., 2019, 166(5): H3175-H3187.
doi: 10.1149/2.0241905jes
|
[19] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A, Jr, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian 16[CP]. Revision A.03. Wallingford, CT: Gaussian, Inc., 2016.
|
[20] |
Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model[J]. J. Chem. Phys., 1999, 110: 6158-6170.
|
[21] |
Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. J. Chem. Phys., 2010, 132: 154104.
|
[22] |
Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. J. Comput. Chem., 2011, 32(7): 1456-1465.
doi: 10.1002/jcc.21759
pmid: 21370243
|
[23] |
Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. J. Phys. Chem. B, 2009, 113(18): 6378-6396.
|
[24] |
Weigenda F, Ahlrichsb R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J]. Phys. Chem. Chem. Phys., 2005, 7(18): 3297-3305.
doi: 10.1039/b508541a
pmid: 16240044
|
[25] |
Weigenda F. Accurate coulomb-fitting basis sets for H to Rn[J]. Phys. Chem. Chem. Phys., 2006, 8(9): 1057-1065.
doi: 10.1039/b515623h
pmid: 16633586
|
[26] |
Legault C Y. CYLView[CP]. 1.0b, Sherbrooke, QC: Université de Sherbrooke, http://www.cylview.org ; 2009.
|
[27] |
Li Y H. Energy diagram plotter CDXML[CP]. 3.5.2, Zenodo, 2023, https://doi.org/10.5281/zenodo.7634466.
|
[28] |
Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer[J]. J. Comput. Chem., 2012, 33(5): 580-592.
doi: 10.1002/jcc.22885
pmid: 22162017
|
[29] |
Lu T, Chen Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems[J]. J. Comput. Chem., 2022, 43(8): 539-555.
doi: 10.1002/jcc.26812
pmid: 35108407
|
[30] |
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics[J]. J. Molec. Graphics, 1996, 14(1): 33-38.
|
[31] |
Stone J E. An efficient library for parallel ray tracing and animation[D]. Missouri, USA: University of Missouri-Rolla, 1998.
|
[32] |
Oka N, Yamada T, Sajiki H, Akai S, Ikawa T. Aryl boronic esters are stable on silica gel and reactive under Suzuki-Miyaura coupling conditions[J]. Org. Lett., 2022, 24(19): 3510-3514.
doi: 10.1021/acs.orglett.2c01174
pmid: 35500272
|
[33] |
Haynes W M, Lide D R, Bruno T J. CRC Handbook of Chemistry and Physics[M]. 97th ed. Boca Raton, USA: CRC Press, 2016. 6-199-6-220.
|
[34] |
Kawamata Y, Vantourout J C, Hickey D P, Bai P, Chen L, Hou Q, Qiao W, Barman K, Edwards M A, Garrido-Castro A F, deGruyter J N, Nakamura H, Knouse K, Qin C, Clay K J, Bao D, Li C, Starr J T, Garcia-Irizarry C, Sach N, White H S, Neurock M, Minteer S D, Baran P S. Electrochemically driven, Ni-catalyzed aryl amination: scope, mechanism, and applications[J]. J. Am. Chem. Soc., 2019, 141(15): 6392-6402.
doi: 10.1021/jacs.9b01886
pmid: 30905151
|
[35] |
Till N A, Oh S, MacMillan D W C, Bird M J. The application of pulse radiolysis to the study of Ni(I) intermediates in Ni-catalyzed cross-coupling reactions[J]. J. Am. Chem. Soc., 2021, 143(25): 9332-9337.
doi: 10.1021/jacs.1c04652
pmid: 34128676
|
[36] |
Gutierrez O, Tellis J C, Primer D N, Molander G A, Kozlowski M C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings[J]. J. Am. Chem. Soc., 2015, 137(15): 4896-4899.
doi: 10.1021/ja513079r
pmid: 25836634
|
[37] |
Yakhvarov D G, Samieva E G, Tazeev D I, Budnikovaa Y G. The reactivity of 2,2′-bipyridine complexes in the electrochemical reduction of organohalides[J]. Russ. Chem. Bull., Int. Ed., 2002, 51: 796-804.
|
[38] |
Diccianni J, Lin Q, Diao T. Mechanisms of nickel-catalyzed coupling reactions and applications in alkene functionalization[J]. Acc. Chem. Res., 2020, 53(4): 906-919.
|