电化学(中英文) ›› 2025, Vol. 31 ›› Issue (9): 2515007. doi: 10.61558/2993-074X.3583
• 综述 • 上一篇
张伶a, 吴汪洋a, 胡秋月a, 杨世丹a, 李莉a,*(), 廖瑞金b, 魏子栋a,*(
)
收稿日期:
2025-05-30
修回日期:
2025-08-08
接受日期:
2025-09-01
发布日期:
2025-09-01
出版日期:
2025-09-28
Ling Zhanga, Wang-Yang Wua, Qiu-Yue Hua, Shi-Dan Yanga, Li Lia,*(), Rui-Jin Liaob, Zi-Dong Weia,*(
)
Received:
2025-05-30
Revised:
2025-08-08
Accepted:
2025-09-01
Online:
2025-09-01
Published:
2025-09-28
Contact:
* Li Li, E-mail: liliracial@cqu.edu.cn,
Zi-Dong Wei, E-mail: zdwei@cqu.edu.cnAbout author:
Li Li and Zi-Dong Wei contributed equally to this work
摘要:
大规模部署电解水制氢技术需要高性能的电催化剂。魏子栋教授课题组针对电解水制氢电极在工业工况条件下运行面临的关键科学与技术问题,持续致力于开展析氢/析氧催化反应机理解析,提升工况条件活性与稳定性的基础科学问题研究。本综述系统地总结了该课题组近十多年围绕高性能析氢和析氧电极研究所取得的进展。首先分析了电解水制氢面临着的析氢反应动力学速率缓慢与析氧反应活性/稳定性相互制约的原因,提出了调控电解水性能的“12345”原则。进而,针对碱水析氢催化剂,发现了复合相界面增强析氢活性的“烟囱效应”和“定域电场增强效应”,利用相界面调控,优化关键物种的选择性吸附、促进界面水分子富集-再定向与活化来强化高极化条件下的传质与反应,提升工业工况反应动力学。对析氧催化剂,提出了“双阴离子调控”、“晶格氧抑制”以及“表面自修复”等策略,通过平衡不同含氧物种吸附强度、调控磁性、增强金属-氧键强度和重组表面动态结构等实现活性与稳定性的同步提升。最后,本文总结了目前析氢/析氧催化剂在工业级碱水槽应用时面临的长周期活性和稳定性的挑战,并提出了未来的研究方向。
张伶, 吴汪洋, 胡秋月, 杨世丹, 李莉, 廖瑞金, 魏子栋. 系列综述(2/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:高性能碱性电解水催化剂[J]. 电化学(中英文), 2025, 31(9): 2515007.
Ling Zhang, Wang-Yang Wu, Qiu-Yue Hu, Shi-Dan Yang, Li Li, Rui-Jin Liao, Zi-Dong Wei. Series Reports from Professor Wei’s Group of Chongqing University: Advancements in Electrochemical Energy Conversions (2/4): Report 2: High-Performance Water Splitting Electrocatalysts[J]. Journal of Electrochemistry, 2025, 31(9): 2515007.
HER mechanism | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acid solutions[ | Alkaline and neural solutions[ | |||||||||||
Electrode reaction | H+(aq.) + 2e- → H2(g); | 2.1 | 2H2O(l) + 2e- → H2(g) + 2OH−(aq.); | 2.4 | ||||||||
Volmer | H+(aq.) + * + e- → H*; | 2.2 | H2O(l) + * + e- → H* + OH-(aq.); | 2.5 | ||||||||
Heyrovsky | H* + H+(aq.) + e- → H2(g); | 2.3 | H2O(l) + H* + e- → H2(g) + OH-(aq.); | 2.6 | ||||||||
Tafel | H* + H* → H2(g) | 2.7 | ||||||||||
OER mechanism | ||||||||||||
Adsorption Evolution Mechanism (AEM)[ | Lattice Oxygen Oxidation Mechanism (LOM)[ | Oxide Path Mechanism (OPM)[ | ||||||||||
Step1 | OH-(aq.) + * → OH* + e-; | 2.8 | (Vo + OlattH*) + OH-(aq.) + * → (Vo + OlattH*) + OH* + e-; | 2.12 | OH-(aq.) + 2* → OH* + * + e-; | 2.16 | ||||||
Step2 | OH* + OH-(aq.) → O* + H2O(l) + e-; | 2.9 | (Vo + OlattH*) + OH* + OH-(aq.) → (Vo + OlattOH*) + H2O + e-; | 2.13 | OH* + OH-(aq.) + * → 2OH*+e-; | 2.17 | ||||||
Step3 | O* + OH-(aq.) → OOH* + e-; | 2.10 | (Vo + OlattOH*) + OH-(aq.) → OlattO + H2O + Vo + e-; | 2.14 | 2OH* + OH-(aq.) → OOH* + H2O + * + e-; | 2.18 | ||||||
Step4 | OOH* + OH-(aq.) → O2(g) + H2O(l) + * + e-; | 2.11 | Vo + OH-(aq.) → (Vo + OlattH*) + e-; | 2.15 | OOH* + * + OH-(aq.) → O2(g) + H2O(l) + 2* + e-; | 2.19 | ||||||
Electrode reaction | 4OH-(aq.) → 2H2O(l) + O2(g) + 4e- | 2.20 |
System | Adsorption energy/Eads (eV) | |||
---|---|---|---|---|
H2O* | OH* | H* | ||
Ni(001) | -0.288 | -3.992 | -3.983 | |
Bare RuO2 cluster | -0.781 | -3.380 | -3.151 | |
RuO2/Ni(001) | Ni sites at non-interface | -0.300 | -3.961 | -3.927 |
Ni sites at interface | non-absorbable | non-absorbable | -3.687 | |
Ru sites | -0.472 | -2.719 | -3.852 | |
NiO/Ni(001) | Ni sites at non-interface | -0.482 | -4.487 | -3.967 |
Ni sites at interface | non-absorbable | non-absorbable | -3.592 |
[1] | Barreto L, Makihira A, Riahi K. The hydrogen economy in the 21st century: A sustainable development scenario[J]. Int. J. Hydrogen Energy, 2003, 28(3): 267-284. https://doi.org/10.1016/S0360-3199(02)00074-5. |
[2] | Crabtree G W, Dresselhaus M S, Buchanan M V. The hydrogen economy[J]. Phy. Today, 2004, 57(12): 39-44. https://doi.org/10.1063/1.1878333. |
[3] | Penner S S. Steps toward the hydrogen economy[J]. Energy, 2006, 31(1): 33-43. https://doi.org/10.1016/j.energy.2004.04.060. |
[4] | Marbán G, Valdés-Solís T. Towards the hydrogen economy?[J]. Int. J. Hydrogen Energy, 2007, 32(12): 1625-1637. https://doi.org/10.1016/j.ijhydene.2006.12.017. |
[5] |
Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S, Nocera D G. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chem. Rev., 2010, 110(11): 6474-6502. https://doi.org/10.1021/cr100246c.
doi: 10.1021/cr100246c URL pmid: 21062098 |
[6] |
Walter M G, Warren E L, Mckone J R, Boettcher S W, Mi Q, Santori E A, Lewis N S. Solar water splitting cells[J]. Chem. Rev., 2010, 110(11): 6446-6473. https://doi.org/10.1021/cr1002326.
doi: 10.1021/cr1002326 URL pmid: 21062097 |
[7] | Bockris J O M. The hydrogen economy: Its history[J]. Int. J. Hydrogen Energy, 2013, 38(6): 2579-2588. https://doi.org/10.1016/j.ijhydene.2012.12.026. |
[8] | Zeng Y, Zhao M T, Zeng H L, Jiang Q, Ming F W, Xi K, Wang Z C, Liang H F. Recent progress in advanced catalysts for electrocatalytic hydrogenation of organics in aqueous conditions[J]. eScience, 2023, 3(5): 100156-100178. https://doi.org/10.1016/j.esci.2023.100156. |
[9] | Chen M, Kitiphatpiboon N, Feng C, Abudula A, Ma Y F, Guan G Q. Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical review[J]. eScience, 2023, 3(2): 100111-100127. https://doi.org/10.1016/j.esci.2023.100111. |
[10] | Wang N, Song S Z, Wu W T, Deng Z F, Tang C. Bridging laboratory electrocatalysts with industrially relevant alkaline water electrolyzers[J]. Adv. Energy Mater., 2024, 14(16): 2303451-2303464. https://doi.org/10.1002/aenm.202303451. |
[11] | Man I C, Su H Y, Calle‐Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nørskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165. https://doi.org/10.1002/cctc.201000397. |
[12] | Yang B L, Xiang Z H. Nanostructure engineering of cathode layers in proton exchange membrane fuel cells: From catalysts to membrane electrode assembly[J]. ACS Nano, 2024, 18(18): 11598-11630. https://doi.org/10.1021/acsnano.4c01113. |
[13] |
Cao J F, Ji Y X, Shao Z Q. Nanotechnologies in ceramic electrochemical cells[J]. Chem. Soc. Rev., 2024, 53(1): 450-501. https://doi.org/10.1039/d3cs00303e.
doi: 10.1039/d3cs00303e URL pmid: 38099438 |
[14] | Ehlers J C, Feidenhans’l A A, Therkildsen K T, Larrazábal G O. Affordable green hydrogen from alkaline water electrolysis: Key research needs from an industrial perspective[J]. ACS Energy Lett., 2023, 8(3): 1502-1509. https://doi.org/10.1021/acsenergylett.2c02897. |
[15] | Zheng X Q, Zhang L, Huang J W, Peng L S, Deng M M, Li L, Li J, Chen H M, Wei Z D. Boosting Hydrogen evolution reaction of nickel sulfides by introducing nonmetallic dopants[J]. J. Phys. Chem. C, 2020, 124(44): 24223-24231. https://doi.org/10.1021/acs.jpcc.0c06971. |
[16] | Zhang L, Li L, Chen H M, Wei Z D. Recent progress in precious metal‐free carbon‐based materials towards the oxygen reduction reaction: Activity, stability, and anti‐poisoning[J]. Chem. - Eur. J., 2020, 26(18): 3973-3990. https://doi.org/10.1002/chem.201904233. |
[17] | Zheng X, Li L, Wei Z D. Constructing and regulating electrocatalysts: from perspective of mesoscale[J]. CIESC Journal, 2020, 71(10): 4445-4461. https://doi.org/10.11949/0438-1157.202007. |
[18] |
Zhang L, Cheng H M, Wei Z D. Recent advance in transition metal oxide-based materials for oxygen evolution reaction electrocatalysts[J]. CIESC J., 2020, 71(9): 3876-3904. https://doi.org/10.11949/0438-1157.20200573.
doi: 10.11949/0438-1157.20200573 URL |
[19] | Zhang L, Wang X Y, Zheng X Q, Peng L S, Shen J J, Xiang R, Deng Z H, Li L, Chen H M, Wei Z D. Oxygen-incorporated NiMoP2 nanowire arrays for enhanced hydrogen evolution activity in alkaline solution[J]. ACS Appl. Energy Mater., 2018, 1(10): 5482-5489. https://doi.org/10.1021/acsaem.8b01044. |
[20] | Huang M H, Cao C S, Liu L, Wei W B, Zhu Q L, Huang Z G. Controlled synthesis of MOF-derived hollow and yolk-shell nanocages for improved water oxidation and selective ethylene glycol reformation[J]. eScience, 2023, 3(5): 100118-100126. https://doi.org/10.1016/j.esci.2023.100118. |
[21] | Liu K K, Meng Z, Fang Y, Jiang H L. Conductive MOFs for electrocatalysis and electrochemical sensor[J]. eScience, 2023, 3(6): 100133-100146. https://doi.org/10.1016/j.esci.2023.100133. |
[22] |
Menezes P W, Walter C, Hausmann J N, Beltran-Suito R, Schlesiger C, Praetz S, Yu Verchenko V, Shevelkov A V, Driess M. Boosting water oxidation through in situ electroconversion of manganese gallide: An intermetallic precursor approach[J]. Angew. Chem. Int. Ed., 2019, 58(46): 16569-16574. https://doi.org/10.1002/anie.201909904.
doi: 10.1002/anie.201909904 URL pmid: 31483557 |
[23] | Zhang Z C, Liu G G, Cui X Y, Chen B, Zhu Y H, Gong Y, Saleem F, Xi S B, Du Y H, Borgna A, Lai Z C, Zhang Q H, Li B, Zong Y, Han Y, Gu L, Zhang H. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution[J]. Adv. Mater., 2018, 30(30): e1801741. https://doi.org/10.1002/adma.201801741. |
[24] |
Luo F, Zhang Q, Yu X X, Xiao S L, Ling Y, Hu H, Guo L, Yang Z H, Huang L, Cai W W, Cheng H S. Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting[J]. Angew. Chem. Int. Ed., 2018, 57(45): 14862-14867. https://doi.org/10.1002/anie.201810102.
doi: 10.1002/anie.201810102 URL pmid: 30238677 |
[25] | Xu G R, Bai J, Jiang J X, Lee J M, Chen Y. Polyethyleneimine functionalized platinum superstructures: Enhancing hydrogen evolution performance by morphological and interfacial control[J]. Chem. Sci., 2017, 8(12): 8411-8418. https://doi.org/10.1039/c7sc04109h. |
[26] | Zhang L, Xiong K, Nie Y, Wang X X, Liao J H, Wei Z D. Sputtering nickel-molybdenum nanorods as an excellent hydrogen evolution reaction catalyst[J]. J. Power Sources, 2015, 297: 413-418. https://doi.org/10.1016/j.jpowsour.2015.08.004. |
[27] | Hu L, Yang B Z, Hou Z P, Lu Y F, Su W T, Li L W. Unlocking the charge doping effect in softly intercalated ultrathin ferromagnetic superlattice[J]. eScience, 2023, 3(3): 100117. https://doi.org/https://doi.org/10.1016/j.esci.2023.100117. |
[28] | Li A, Zhang L, Wang F Z, Zhang L, Li L, Chen H M, Wei Z D. Rational design of porous Ni-Co-Fe ternary metal phosphides nanobricks as bifunctional electrocatalysts for efficient overall water splitting[J]. Appl. Catal. B, 2022, 310: 121353-121362. https://doi.org/10.1016/j.apcatb.2022.121353. |
[29] | Zhang L, Huang J W, Zheng Q Z, Li A, Li X L, Li J, Shao M H, Chen H M, Wei Z D, Deng Z H. “Superaerophobic” NiCo bimetallic phosphides for highly efficient hydrogen evolution reaction electrocatalysts[J]. Chem. Commun., 2021, 57(50): 6173-6176. https://doi.org/10.1039/D1CC01698A. |
[30] | Tong C, Xiang R, Peng L S, Tan L Q, Tang X Y, Wang J C, Li L, Liao Q, Wei Z D. Amorphous FeOx (x = 1, 1.5) coated Cu3P nanosheets with bamboo leaves-like morphology induced by solvent molecule adsorption for highly active HER catalysts[J]. J. Mater. Chem. A, 2020, 8(6): 3351-3356. https://doi.org/10.1039/c9ta11779b. |
[31] | Peng L S, Liao M S, Zheng X Q, Nie Y, Zhang L, Wang M J, Xiang R, Wang J, Li L, Wei Z D. Accelerated alkaline hydrogen evolution on M(OH)x/M-MoPOx (M = Ni, Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps[J]. Chem. Sci., 2020, 11(9): 2487-2493. https://doi.org/10.1039/c9sc04603h. |
[32] |
Xiang R, Duan Y J, Tong C, Peng L S, Wang J, Shah S S A, Najam T, Huang X, Wei Z D. Self-standing FeCo Prussian blue analogue derived FeCo/C and FeCoP/C nanosheet arrays for cost-effective electrocatalytic water splitting[J]. Electrochim. Acta, 2019, 302: 45-55. https://doi.org/10.1016/j.electacta.2019.01.170.
doi: 10.1016/j.electacta.2019.01.170 URL |
[33] | Cheng C, Shah S S A, Najam T, Zhang L, Qi X Q, Wei Z D. Highly active electrocatalysis of hydrogen evolution reaction in alkaline medium by Ni-P alloy: A capacitance-activity relationship[J]. J. Energy Chem., 2017, 26(6): 1245-1251. https://doi.org/10.1016/j.jechem.2017.09.028. |
[34] | Wang X, Yu M H, Feng X L. Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis[J]. eScience, 2023, 3(4): 100141-100160. https://doi.org/10.1016/j.esci.2023.100141. |
[35] | Anjum M a R, Lee M H, Lee J S. Boron-and nitrogen-codoped molybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. ACS Catal., 2018, 8(9): 8296-8305. https://doi.org/10.1021/acscatal.8b01794. |
[36] | Wu Y H, He H W. A novel Ni-S-W-C electrode for hydrogen evolution reaction in alkaline electrolyte[J]. Mater. Lett., 2017, 209: 532-534. https://doi.org/10.1016/j.matlet.2017.08.086. |
[37] | Peng L S, Shen J J, Zhang L, Wang Y, Xiang R, Li J, Li L, Wei Z D. Graphitized carbon-coated vanadium carbide nanoboscages modified by nickel with enhanced electrocatalytic activity for hydrogen evolution in both acid and alkaline solutions[J]. J. Mater. Chem. A, 2017, 5(44): 23028-23034. https://doi.org/10.1039/c7ta07275a. |
[38] | Xiong K, Li L, Zhang L, Ding W, Peng L S, Wang Y, Chen S G, Tan S Y, Wei Z D. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance[J]. J. Mater. Chem. A, 2015, 3(5): 1863-1867. https://doi.org/10.1039/c4ta05686h. |
[39] | Jing S Y, Lu J J, Yu G T, Yin S B, Luo L, Zhang Z S, Ma Y F, Chen W, Shen P K. Carbon-encapsulated wox hybrids as efficient catalysts for hydrogen evolution[J]. Adv. Mater., 2018, 30(28): 1705979-1705986. https://doi.org/10.1002/adma.201705979. |
[40] | Najam T, Ahmad Shah S S, Ding W, Ling Z, Li L, Wei Z D. Electron penetration from metal core to metal species attached skin in nitrogen-doped core-shell catalyst for enhancing oxygen evolution reaction[J]. Electrochim. Acta, 2019, 327: 134939-134947. https://doi.org/10.1016/j.electacta.2019.134939. |
[41] |
Wang Y, Chen L H, Mao Z X, Peng L S, Xiang R, Tang X Y, Deng J H, Wei Z D, Liao Q. Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions[J]. Sci. Bull., 2019, 64(15): 1095-1102. https://doi.org/10.1016/j.scib.2019.06.012.
doi: 10.1016/j.scib.2019.06.012 URL pmid: 36659770 |
[42] | Yan H J, Xie Y, Wu A P, Cai Z C, Wang L, Tian C G, Zhang X M, Fu H G. Anion-modulated HER and OER activities of 3d Ni-V-based interstitial compound heterojunctions for high-efficiency and stable overall water splitting[J]. Adv. Mater., 2019, 31(23): e1901174. https://doi.org/10.1002/adma.201901174. |
[43] |
Li Y B, Tan X, Chen S, Bo X, Ren H J, Smith S C, Zhao C. Processable surface modification of nickel-heteroatom (N, S) bridge sites for promoted alkaline hydrogen evolution[J]. Angew. Chem. Int. Ed., 2019, 58(2): 461-466. https://doi.org/10.1002/anie.201808629.
doi: 10.1002/anie.201808629 URL pmid: 30353653 |
[44] | Yan J Q, Kong L Q, Ji Y J, Li Y T, White J, Liu S Z, Han X P, Lee S T, Ma T Y. Air-stable phosphorus-doped molybdenum nitride for enhanced elctrocatalytic hydrogen evolution[J]. Commun. Chem., 2018, 1(1): 1-10. https://doi.org/10.1038/s42004-018-0097-9. |
[45] |
Zhang Y Q, Ouyang B, Xu J, Jia G C, Chen S, Rawat R S, Fan H J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution[J]. Angew. Chem. Int. Ed., 2016, 55(30): 8670-8674. https://doi.org/10.1002/anie.201604372.
doi: 10.1002/anie.201604372 URL pmid: 27254484 |
[46] | Zheng X Q, Zhang L, He W, Li L, Lu S. Heteroatom-doped nickel sulfide for efficient electrochemical oxygen evolution reaction[J]. Energies, 2023, 16(2): 881-895. https://doi.org/10.3390/en16020881. |
[47] | Wang M J, Zheng X Q, Song L L, Feng X, Liao Q, Li J, Li L, Wei Z D. Fe3O4/FeS2 heterostructures enable efficient oxygen evolution reaction[J]. J. Mater. Chem. A, 2020, 8(28): 14145-14151. https://doi.org/10.1039/c9ta13775k. |
[48] | Peng L S, Wang J, Nie Y, Xiong K, Wang Y, Zhang L, Chen K, Ding W, Li L, Wei Z D. Dual-ligand synergistic modulation: a satisfactory strategy for simultaneously improving the activity and stability of oxygen evolution electrocatalysts[J]. ACS Catal., 2017, 7(12): 8184-8191. https://doi.org/10.1021/acscatal.7b01971. |
[49] | Panda C, Menezes P W, Yao S L, Schmidt J, Walter C, Hausmann J N, Driess M. Boosting electrocatalytic hydrogen evolution activity with a NiPt3@NiS heteronanostructure evolved from a molecular nickel-platinum precursor[J]. J. Am. Chem. Soc., 2019, 141(34): 13306-13310. https://doi.org/10.1021/jacs.9b06530. |
[50] | Deng S J, Luo M, Ai C Z, Zhang Y, Liu B, Huang L, Jiang Z, Zhang Q H, Gu L, Lin S W, Wang X L, Yu L, Wen J G, Wang J A, Pan G X, Xia X H, Tu J P. Synergistic doping and intercalation: Realizing deep phase modulation on MoS2 arrays for high-efficiency hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2019, 58(45): 16289-16296. https://doi.org/10.1002/anie.201909698. |
[51] |
Chinese Society of Electrochemistry. The top ten scientific questions in electrochemistry[J]. J. Electrochem., 2024, 30(1): 2024121. https://doi.org/10.61558/2993-074x.3444.
doi: 10.61558/2993-074X.3444 URL |
[52] | Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution[J]. J. Electrochem. Soc., 2005, 152(3): J23-J26. https://doi.org/10.1149/1.1856988. |
[53] | Hinnemann B, Moses P G, Bonde J, Joergensen K P, Nielsen J H, Horch S, Chorkendorff I, Noerskov J K. Biomimetic hydrogen evolution: MoS2nanoparticles as catalyst for hydrogen evolution[J]. J. Am. Chem. Soc., 2005, 36(25): 5308-5309. https://doi.org/10.1021/ja0504690. |
[54] | Zhang L, Huang J W, Zheng Q Z, Li A, Li X L, Li J, Shao M H, Chen H M, Wei Z D, Deng Z H, Li C. “Superaerophobic” NiCo bimetallic phosphides for highly efficient hydrogen evolution reaction electrocatalysts[J]. Chem. Commun., 2021, 57(50): 6173-6176. https://doi.org/10.1039/d1cc01698a. |
[55] | Angulo A, Van Der Linde P, Gardeniers H, Modestino M, Fernández Rivas D. Influence of bubbles on the energy conversion efficiency of electrochemical reactors[J]. Joule, 2020, 4(3): 555-579. https://doi.org/10.1016/j.joule.2020.01.005. |
[56] | Jia B B, Zhang B H, Cai Z, Yang X Y, Li L D, Guo L. Construction of amorphous/crystalline heterointerfaces for enhanced electrochemical processes[J]. eScience, 2023, 3(2): 100112. https://doi.org/https://doi.org/10.1016/j.esci.2023.100112. |
[57] | Jiang J X, Liao J H, Tao S C, Najam T, Ding W, Wang H J, Wei Z D. Modulation of iridium-based catalyst by a trace of transition metals for hydrogen oxidation/evolution reaction in alkaline[J]. Electrochim. Acta, 2020, 333: 135444-135451. https://doi.org/10.1016/j.electacta.2019.135444. |
[58] | Xiong K, Li L, Deng Z H, Xia M R, Chen S G, Tan S Y, Peng X J, Duan C Y, Wei Z D. RuO2 loaded into porous Ni as a synergistic catalyst for hydrogen production[J]. RSC Adv., 2014, 4(39): 20521-20526. https://doi.org/10.1039/c4ra01379d. |
[59] | Meng Z Y, Qiu Z M, Shi Y X, Wang S X, Zhang G X, Pi Y C, Pang H. Micro/nano metal-organic frameworks meet energy chemistry: A review of materials synthesis and applications[J]. eScience, 2023, 3(2): 100092. https://doi.org/https://doi.org/10.1016/j.esci.2023.100092. |
[60] | Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions[J]. J. Electroanal. Chem., 1972, 39(1): 163-184. https://doi.org/10.1016/S0022-0728(72)80485-6. |
[61] | Peng L S, Zheng X Q, Li L, Zhang L, Yang N, Xiong K, Chen H M, Li J, Wei Z D. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction[J]. Appl. Catal. B, 2019, 245: 122-129. https://doi.org/10.1016/j.apcatb.2018.12.035. |
[62] |
Subbaraman R, Tripkovic D, Chang K C, Strmcnik D, Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic N M. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts[J]. Nat. Mater., 2012, 11(6): 550-557. https://doi.org/10.1038/nmat3313.
doi: 10.1038/nmat3313 URL pmid: 22561903 |
[63] |
Subbaraman R, Tripkovic D, Strmcnik D, Chang K-C, Uchimura M, Paulikas A P, Stamenkovic V, Markovic N M. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260. https://doi.org/10.1126/science.1211934.
doi: 10.1126/science.1211934 URL pmid: 22144621 |
[64] | Rossmeisl J, Logadottir A, Nørskov J K. Electrolysis of water on (oxidized) metal surfaces[J]. Chem. Phys., 2005, 319(1-3): 178-184. https://doi.org/10.1016/j.chemphys.2005.05.038. |
[65] | Rossmeisl J, Qu Z W, Zhu H, Kroes G J, Nørskov J K. Electrolysis of water on oxide surfaces[J]. J. Electroanal. Chem., 2007, 607(1-2): 83-89. https://doi.org/10.1016/j.jelechem.2006.11.008. |
[66] | Yoo J S, Rong X, Liu Y, Kolpak A M. Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites[J]. ACS Catal., 2018, 8(5): 4628-4636. https://doi.org/10.1021/acscatal.8b00612. |
[67] |
Grimaud A, Diaz-Morales O, Han B, Hong W T, Lee Y L, Giordano L, Stoerzinger K A, Koper M T M, Shao-Horn Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution[J]. Nat. Chem., 2017, 9(5): 457-465. https://doi.org/10.1038/nchem.2695.
doi: 10.1038/nchem.2695 URL pmid: 28430191 |
[68] | Ping X Y, Liu Y D, Zheng L X, Song Y, Guo L, Chen S G, Wei Z D. Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation[J]. Nat. Commun., 2024, 15(1): 2501-2511. https://doi.org/10.1038/s41467-024-46815-6. |
[69] |
Chang J W, Shi Y Y, Wu H, Yu J K, Jing W, Wang S Y, Waterhouse G I N, Tang Z Y, Lu S Y. Oxygen radical coupling on short-range ordered Ru atom arrays enables exceptional activity and stability for acidic water oxidation[J]. J. Am. Chem. Soc., 2024, 146(19): 12958-12968. https://doi.org/10.1021/jacs.3c13248.
doi: 10.1021/jacs.3c13248 URL pmid: 38695595 |
[70] | Kang W C, Wei R F, Yin H, Li D F, Chen Z, Huang Q G, Zhang P F, Jing H W, Wang X L, Li C. Unraveling sequential oxidation kinetics and determining roles of multi-cobalt active sites on Co3O4 catalyst for water oxidation[J]. J. Am. Chem. Soc., 2023, 145(6): 3470-3477. https://doi.org/10.1021/jacs.2c11508. |
[71] |
Pushkar Y, Pineda-Galvan Y, Ravari A K, Otroshchenko T, Hartzler D A. Mechanism for O-O bond formation via radical coupling of metal and ligand based radicals: A new pathway[J]. J. Am. Chem. Soc., 2018, 140(42): 13538-13541. https://doi.org/10.1021/jacs.8b06836.
doi: 10.1021/jacs.8b06836 URL pmid: 30296067 |
[72] |
Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, Van Der Vliet D, Paulikas A P, Stamenkovic V R, Markovic N M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption[J]. Nat. Chem., 2013, 5(4): 300-306. https://doi.org/10.1038/nchem.1574.
doi: 10.1038/nchem.1574 URL pmid: 23511418 |
[73] | Koper M T M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis[J]. J. Electroanal. Chem., 2011, 660(2): 254-260. https://doi.org/10.1016/j.jelechem.2010.10.004. |
[74] |
Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B J, Durst J, Bozza F, Graule T, Schaublin R, Wiles L, Pertoso M, Danilovic N, Ayers K E, Schmidt T J. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting[J]. Nat. Mater., 2017, 16(9): 925-931. https://doi.org/10.1038/nmat4938.
doi: 10.1038/nmat4938 URL pmid: 28714982 |
[75] | Deng M M, Li M T, Jiang S K, Nie Y, Li L, Wei Z D. Interfacial water enrichment and reorientation on Pt/C catalysts induced by metal oxides participation for boosting the hydrogen evolution reaction[J]. J. Phys. Chem. Lett., 2022, 13(4): 1069-1076. https://doi.org/10.1021/acs.jpclett.1c03808. |
[76] | Boudart M, Vannice M A, Benson J E. Adlineation, portholes and spillover[J]. Zeitschrift für Physikalische Chemie, 1969, 64: 171-177. https://doi.org/10.1524/zpch.1969.64.1_4.171. |
[77] | Deng M M, Yang H M, Peng L S, Zhang L, Tan L Q, He G J, Shao M H, Li L, Wei Z D. Insight into the boosted activity of TiO2-CoP composites for hydrogen evolution reaction: Accelerated mass transfer, optimized interfacial water, and promoted intrinsic activity[J]. J. Energy Chem., 2022, 74: 111-120. https://doi.org/10.1016/j.jechem.2022.06.047. |
[78] |
Zheng X Q, Peng L S, Li L, Yang N, Yang Y, Li J, Wang J C, Wei Z D. Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction[J]. Chem. Sci., 2018, 9(7): 1822-1830. https://doi.org/10.1039/c7sc04851c.
doi: 10.1039/c7sc04851c URL pmid: 29675227 |
[79] |
Zhang L, Wang X Y, Li A, Zheng X Q, Peng L S, Huang J W, Deng Z H, Chen H M, Wei Z D. Rational construction of macroporous CoFeP triangular plate arrays from bimetal-organic frameworks as high-performance overall water-splitting catalysts[J]. J. Mater. Chem. A, 2019, 7(29): 17529-17535. https://doi.org/10.1039/c9ta05282h.
doi: 10.1039/c9ta05282h URL |
[80] | Peng L S, Shen J J, Zheng X Q, Xiang R, Deng M M, Mao Z X, Feng Z P, Zhang L, Li L, Wei Z D. Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting[J]. J. Catal., 2019, 369: 345-351. https://doi.org/10.1016/j.jcat.2018.11.023. |
[81] | Zheng X Q, Li L, Deng M M, Li J, Ding W, Nie Y, Wei Z D. Understanding the effect of interfacial interaction on metal/metal oxide electrocatalysts for hydrogen evolution and hydrogen oxidation reactions on the basis of first-principles calculations[J]. Catal. Sci. Technol., 2020, 10(14): 4743-4751. https://doi.org/10.1039/d0cy00960a. |
[82] | Li M T, Xie Z Y, Zheng X Q, Li L, Li J, Ding W, Wei Z D. Revealing the regulation mechanism of Ir-MoO2 interfacial chemical bonding for improving hydrogen oxidation reaction[J]. ACS Catal., 2021, 11(24): 14932-14940. https://doi.org/10.1021/acscatal.1c04440. |
[83] | Seh Z W, Fredrickson K D, Anasori B, Kibsgaard J, Strickler A L, Lukatskaya M R, Gogotsi Y, Jaramillo T F, Vojvodic A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution[J]. ACS Energy Lett., 2016, 1(3): 589-594. https://doi.org/10.1021/acsenergylett.6b00247. |
[84] | Hammer B, Nørskov J K. Theoretical surface science and catalysis—calculations and concepts[J]. Adv. Catal., 2000, 45: 71-129. https://doi.org/10.1016/S0360-0564(02)45013-4. |
[85] | Liu Y, Liu S L, Wang Y, Zhang Q H, Gu L, Zhao S C, Xu D D, Li Y F, Bao J C, Dai Z H. Ru modulation effects in the synthesis of unique rod-like Ni@Ni2P-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance[J]. J. Am. Chem. Soc., 2018, 140(8): 2731-2734. https://doi.org/10.1021/jacs.7b12615. |
[86] | Wexler R B, Martirez J M P, Rappe A M. Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning[J]. J. Am. Chem. Soc., 2018, 140(13): 4678-4683. https://doi.org/10.1021/jacs.8b00947. |
[87] | Caban-Acevedo M, Stone M L, Schmidt J R, Thomas J G, Ding Q, Chang H C, Tsai M L, He J H, Jin S. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide[J]. Nat. Mater., 2015, 14(12): 1245-1251. https://doi.org/10.1038/nmat4410. |
[88] | Yao Y C, Hu S L, Chen W X, Huang Z Q, Wei W C, Yao T, Liu R R, Zang K T, Wang X Q, Wu G, Yuan W J, Yuan T W, Zhu B Q, Liu W, Li Z J, He D S, Xue Z G, Wang Y, Zheng X S, Dong J C, Chang C R, Chen Y X, Hong X, Luo J, Wei S Q, Li W X, Strasser P, Wu Y, Li Y D. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nat. Catal., 2019, 2(4): 304-313. https://doi.org/10.1038/s41929-019-0246-2. |
[89] | Li L, Feng X H, Nie Y, Chen S G, Shi F, Xiong K, Ding W, Qi X, Hu J S, Wei Z D, Wan L J, Xia M R. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2[J]. ACS Catal., 2015, 5(8): 4825-4832. https://doi.org/10.1021/acscatal.5b00320. |
[90] | Xie X H, Song M A, Wang L G, Engelhard M H, Luo L L, Miller A, Zhang Y Y, Du L, Pan H L, Nie Z M, Chu Y Y, Estevez L, Wei Z D, Liu H, Wang C M, Li D S, Shao Y Y. Electrocatalytic hydrogen evolution in neutral pH solutions: Dual-phase synergy[J]. ACS Catal., 2019, 9(9): 8712-8718. https://doi.org/10.1021/acscatal.9b02609. |
[91] | Hu C Y, Ma Q Y, Hung S F, Chen Z N, Ou D H, Ren B, Chen H M, Fu G, Zheng N F. In situ electrochemical production of ultrathin nickel nanosheets for hydrogen evolution electrocatalysis[J]. Chem, 2017, 3(1): 122-133. https://doi.org/10.1016/j.chempr.2017.05.011. |
[92] | Speck F D, Dettelbach K E, Sherbo R S, Salvatore D A, Huang A, Berlinguette C P. On the electrolytic stability of iron-nickel oxides[J]. Chem, 2017, 2(4): 590-597. https://doi.org/10.1016/j.chempr.2017.03.006. |
[93] | Zhao J W, Zhang H, Li C F, Zhou X, Wu J Q, Zeng F, Zhang J W, Li G R. Key roles of surface Fe sites and Sr vacancies in the perovskite for an efficient oxygen evolution reaction via lattice oxygen oxidation[J]. Energy Environ. Sci., 2022, 15(9): 3912-3922. https://doi.org/10.1039/d2ee00264g. |
[94] |
Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, Hu X. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance[J]. J. Am. Chem. Soc., 2018, 140(25): 7748-7759. https://doi.org/10.1021/jacs.8b04546.
doi: 10.1021/jacs.8b04546 URL pmid: 29788720 |
[95] | Ma Q Y, Hu C Y, Liu K L, Hung S F, Ou D H, Chen H M, Fu G, Zheng N F. Identifying the electrocatalytic sites of nickel disulfide in alkaline hydrogen evolution reaction[J]. Nano Energy, 2017, 41: 148-153. https://doi.org/10.1016/j.nanoen.2017.09.036. |
[96] | Geiger S, Kasian O, Ledendecker M, Pizzutilo E, Mingers A M, Fu W T, Diaz-Morales O, Li Z, Oellers T, Fruchter L, Ludwig A, Mayrhofer K J J, Koper M T M, Cherevko S. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nat. Catal., 2018, 1(7): 508-515. https://doi.org/10.1038/s41929-018-0085-6. |
[97] | Li A, Tang X X, Cao R J, Song D C, Wang F Z, Yan H, Chen H M, Wei Z D. Directed surface reconstruction of Fe modified Co2VO4 spinel oxides for water oxidation catalysts experiencing self-terminating surface deterioration[J]. Adv. Mater., 2024: 2401818-2401828. https://doi.org/10.1002/adma.202401818. |
[98] |
Xiang R, Tong C, Wang Y, Peng L S, Nie Y, Li L, Huang X, Wei Z D. Hierarchical coral-like FeNi(OH) /Ni via mild corrosion of nickel as an integrated electrode for efficient overall water splitting[J]. Chin. J. Catal., 2018, 39(11): 1736-1745. https://doi.org/10.1016/s1872-2067(18)63150-x.
doi: 10.1016/S1872-2067(18)63150-X URL |
[99] |
Ahmad R, Kuppusamy P. Theory, instrumentation, and applications of electron paramagnetic resonance oximetry[J]. Chem. Rev., 2010, 110(5): 3212-3236. https://doi.org/10.1021/cr900396q.
doi: 10.1021/cr900396q URL pmid: 20218670 |
[1] | 陈明星, 刘念, 杜子翯, 齐静, 曹睿. 离子液体增强质子转移并促进中性析氧反应[J]. 电化学(中英文), 2025, 31(7): 2515001-. |
[2] | 相乐隆正, 中居沙映, 与夫龙介, 小仁翔太. 后酰胺化和直接酯化法制备铟锡氧化物基氧化还原活性单层膜及其光谱电化学特性分析[J]. 电化学(中英文), 2025, 31(6): 2417002-. |
[3] | 王亦清, 林治, 李明涛, 沈少华. 聚苝酰亚胺原子和电子结构的理论见解:光催化析氧活性的起源[J]. 电化学(中英文), 2025, 31(5): 2418002-. |
[4] | 邓豪, 刘佳, 侯中军. 介孔碳质子交换膜燃料电池结构与传输阻力仿真分析[J]. 电化学(中英文), 2025, 31(5): 2514001-. |
[5] | 钟小慧, 王飞, 武安祺, 韩贝贝, 王建新, 官万兵. 无空气环境下平管型SOEC电解堆CO2/H2O共电解稳定性研究[J]. 电化学(中英文), 2025, 31(4): 2411121-. |
[6] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[7] | 吴刚, 杨武海, 杨洋, 杨慧军. 水性锌离子电池的无枝晶策略:结构、电解质和隔膜[J]. 电化学(中英文), 2024, 30(12): 2415003-. |
[8] | 汤亚飞, 武安祺, 韩贝贝, 刘华, 包善军, 林王林, 陈铭, 官万兵, Subhash C. Singhal. 以掺氢天然气为燃料直接内重整固体氧化物电池堆的稳定性[J]. 电化学(中英文), 2024, 30(1): 2314001-. |
[9] | 黄荣钦, 廖卫平, 晏梦璇, 刘石, 李远明, 康雄武. 磷掺杂的Ru-Pt合金催化剂及其电催化碱性析氢性能[J]. 电化学(中英文), 2023, 29(5): 2203081-. |
[10] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[11] | 李家欣, 冯立纲. 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学(中英文), 2022, 28(9): 2214001-. |
[12] | 郭丹丹, 俞红梅, 迟军, 邵志刚. 自支撑NiFe LDHs@Co-OH-CO3纳米棒阵列电极用于碱性阴离子交换膜电解水[J]. 电化学(中英文), 2022, 28(9): 2214003-. |
[13] | 倪静, 施兆平, 王显, 王意波, 吴鸿翔, 刘长鹏, 葛君杰, 邢巍. 低铱酸性氧析出电催化剂的研究进展[J]. 电化学(中英文), 2022, 28(9): 2214010-. |
[14] | 崔爱林, 白洋, 俞宏英, 孟惠民. Pt/TiO2-CNx催化剂中纳米TiO2 (A)/(R)相含量的电催化“火山形”效应[J]. 电化学(中英文), 2022, 28(5): 2110021-. |
[15] | 应方, 许珊珊, 许燕冰, 梁苗苗, 李剑锋. Fe3O4磁性纳米颗粒催化电化学降解土霉素的研究[J]. 电化学(中英文), 2022, 28(4): 2107141-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||