欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文)

• 电化学获奖人专辑 •    

系列综述(2/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:高性能碱性电解水催化剂

张伶a, 吴汪洋a, 胡秋月a, 杨世丹a, 李莉a,*, 廖瑞金b, 魏子栋a,*   

  1. a. 特种电源全国重点实验室,化工过程强化与反应国家-地方联合工程实验室,重庆大学化学化工学院,沙正街174号,重庆40044; b. 输配电装备及系统安全与新技术国家重点实验室,重庆大学电气工程学院,沙正街174号,重庆40044.
  • 发布日期:2025-09-01
  • 通讯作者: 李莉, 魏子栋 E-mail:liliracial@cqu.edu.cn; zdwei@cqu.edu.cn

Series Reports from Professor Wei’s Group of Chongqing University: Advancements in Electrochemical Energy Conversions (2/4): Report 2: High-Performance Water Splitting Electrocatalysts

Ling Zhanga, Wangyang Wua, Qiuyue Hua, Shidan Yanga, Li Lia,*, Ruijin Liaob, Zidong Weia,*   

  1. a. National Key Laboratory of Special Power Supplies, National-Municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing 400044, China; b. The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Shazhengjie 174, Chongqing 400044, China.
  • Online:2025-09-01
  • Contact: Li Li, Zidong Wei E-mail:liliracial@cqu.edu.cn; zdwei@cqu.edu.cn

摘要: 大规模部署电解水制氢技术需要高性能的电催化剂。魏子栋教授课题组针对电解水制氢电极在工业工况条件下运行面临的关键科学与技术问题,持续致力于开展析氢/析氧催化反应机理解析,提升工况条件活性与稳定性的基础科学问题研究。本综述系统的总结了该课题组近十多年围绕高性能析氢和析氧电极研究所取得的进展。首先分析了电解水制氢面临着的析氢反应动力学速率缓慢与析氧反应活性/稳定性相互制约的原因,提出了调控电解水性能的“12345”原则。进而,针对碱水析氢催化剂,发现了复合相界面增强析氢活性的“烟囱效应”和“定域电场增强效应”,利用相界面调控,优化关键物种的选择性吸附、促进界面水分子富集-再定向与活化来强化高极化条件下的传质与反应,提升工业工况反应动力学。对析氧催化剂,提出了“双阴离子调控”,“晶格氧抑制”以及“表面自修复”等策略,通过平衡不同含氧物种吸附强度、调控磁性、增强金属-氧键强度和重组表面动态结构等实现活性与稳定性的同步提升。最后,本文总结了目前析氢/析氧催化剂在工业级碱水槽应用时面临的长周期活性和稳定性的挑战,并提出了未来的研究方向。

关键词: 碱水电解制氢, 析氢反应, 析氧反应, 活性, 稳定性

Abstract: The unavailability of high-performance and cost-effective electrocatalysts impeded the large-scale deployment of alkaline water electrolyzers. Professor Zidong Wei's group has focused on resolving critical challenges in industrial alkaline electrolysis, particularly elucidating hydrogen and oxygen evolution reaction (HER/OER) mechanisms while addressing the persistent activity-stability trade-off. This review summarizes their decade-long progress in developing advanced electrodes, analyzing the origins of sluggish alkaline HER kinetics and OER stability limitations. Professor Wei proposes a unifying "12345 Principle" as an optimization framework. For HER electrocatalysts, they identified that metal/metal oxide interfaces create synergistic "chimney effects" and "local electric field enhancement effect", enhancing selective intermediate adsorption, interfacial water enrichment/reorientation, and mass transport under industrial high-polarization conditions. Regarding OER, innovative strategies, including dual-ligand synergistic modulation, lattice oxygen suppression, and self-repairing surface construction, are demonstrated to balance oxygen species adsorption, optimize spin states, and dynamically reinforce metal-oxygen bonds for concurrent activity-stability enhancement. The review concludes by addressing remaining challenges in long-term industrial durability and suggesting future research priorities.

Key words: Alkaline Water Splitting, HER, OER, Intrinsic Activity, Stability