电化学(中英文) ›› 2024, Vol. 30 ›› Issue (1): 2314001. doi: 10.61558/2993-074X.3430
• 论文 • 上一篇
汤亚飞a, 武安祺a, 韩贝贝a, 刘华b, 包善军b, 林王林c, 陈铭d, 官万兵a,*(), Subhash C. Singhala
收稿日期:
2023-08-15
修回日期:
2023-10-20
接受日期:
2023-10-31
出版日期:
2024-01-28
发布日期:
2023-11-15
通讯作者:
官万兵
E-mail:wbguan@nimte.ac.cn
Ya-Fei Tanga, An-Qi Wua, Bei-Bei Hana, Hua Liub, Shan-Jun Baob, Wang-Lin Linc, Ming Chend, Wan-Bing Guana,*(), Subhash C. Singhala
Received:
2023-08-15
Revised:
2023-10-20
Accepted:
2023-10-31
Published:
2024-01-28
Online:
2023-11-15
Contact:
Wan-Bing Guan
E-mail:wbguan@nimte.ac.cn
摘要:
本文研究了掺氢天然气直接内重整平管型固体氧化物电池短堆的长期稳定性和衰减机理。通过约3000小时的实测实验,结果显示,电堆的总体衰减率为2.3% kh-1,电堆中三个金属连接板的面积比电阻分别增加了0.276 Ω·cm2、0.254 Ω·cm2和0.249 Ω·cm2,但电堆中两个电池的电压反而分别增加了3.38 mV·kh-1和3.78 mV·kh-1。电堆衰减主要由金属连接件表层氧化及其与阴极集流层材料反应生成SrCrO4物质,两者共同作用增大了电池与金属连接体间的界面电阻所致。结果表明,以掺氢天然气为燃料直接内重整平管型固体氧化物燃料电池电堆具有良好的稳定性。本文工作为掺氢天然气在固体氧化物燃料电池堆中的直接内重整应用提供了理论参考与实验依据。
汤亚飞, 武安祺, 韩贝贝, 刘华, 包善军, 林王林, 陈铭, 官万兵, Subhash C. Singhal. 以掺氢天然气为燃料直接内重整固体氧化物电池堆的稳定性[J]. 电化学(中英文), 2024, 30(1): 2314001.
Ya-Fei Tang, An-Qi Wu, Bei-Bei Han, Hua Liu, Shan-Jun Bao, Wang-Lin Lin, Ming Chen, Wan-Bing Guan, Subhash C. Singhal. Stability of a Solid Oxide Cell Stack under Direct Internal-Reforming of Hydrogen-Blended Methane[J]. Journal of Electrochemistry, 2024, 30(1): 2314001.
Composition | Material | Thickness |
---|---|---|
Supporting layer | NiO-3YSZ (3 mol.% yttria stabilized zirconia) | 2.8 mm |
Anode | NiO-8YSZ (8 mol.% yttria stabilized zirconia) | 10 µm |
Electrolyte | 8YSZ (8 mol.% yttria stabilized zirconia) | 10 µm 2 µm |
Barrier layer | GDC (Gd0.1Ce0.9O2-δ) | |
Cathode | LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) - GDC | 15 µm |
Buffer layer | LSC (La0. 6Sr0. 4CoO3-δ) | 150 µm |
[1] |
Hanif H B, Motola M, Qayyum S, Rauf S, Khalid A, Li C J, Li C X. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion[J]. Chem. Eng. J., 2022, 428: 132603.
doi: 10.1016/j.cej.2021.132603 URL |
[2] |
Hua B, Li M, Sun Y F, Zhang Y Q, Yan N, Li J, Etsell T, Sarkar P, Luo J L. Grafting doped manganite into nickel anode enables efficient and durable energy conversions in biogas solid oxide fuel cells[J]. Appl. Catal. B-Environ., 2017, 200: 174-181.
doi: 10.1016/j.apcatb.2016.07.001 URL |
[3] |
Zhuang Z C, Li Y H, Yu R H, Xia L X, Yang J R, Lang Z Q, Zhu J X, Huang J Z, Wang J O, Wang Y, Fan L D, Wu J S, Zhao Z, Wang D S, Li Y D. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes[J]. Nat. Catal., 2022, 5: 300-310.
doi: 10.1038/s41929-022-00764-9 |
[4] |
Yang Y, Li T, Feng P Z, Wang X X, Wang S R, Li Y H, Shao Z P. Highly efficient conversion of oxygen-bearing low concentration coal-bed methane into power via solid oxide fuel cell integrated with an activated catalyst-modified anode microchannel[J]. Appl. Energy, 2022, 328: 120134.
doi: 10.1016/j.apenergy.2022.120134 URL |
[5] |
Alaedini A H, Tourani H K, Saidi M. A review of waste-to-hydrogen conversion technologies for solid oxide fuel cell (SOFC) applications: Aspect of gasification process and catalyst development[J]. J. Environ. Manage., 2023, 329: 117077.
doi: 10.1016/j.jenvman.2022.117077 URL |
[6] |
Kupecki J, Motylinski K, Milewski J. Dynamic analysis of direct internal reforming in a SOFC stack with electrolyte-supported cells using a quasi-1D model[J]. Appl. Energy, 2018, 227: 198-205.
doi: 10.1016/j.apenergy.2017.07.122 URL |
[7] |
Menon V, Banerjee A, Dailly J, Deutschmann O. Numerical analysis of mass and heat transport in proton-conducting SOFCs with direct internal reforming[J]. Appl. Energy, 2015, 149: 161-175.
doi: 10.1016/j.apenergy.2015.03.037 URL |
[8] |
Sang J K, Liu S, Yang J, Wu T, Luo X, Zhao Y M, Wang J X, Guan W B, Chai M R, Singhal S C. Power generation from flat-tube solid oxide fuel cells by direct internal dry reforming of methanol: A route for simultaneous utilization of CO2 and biofuels[J]. Chem. Eng. J., 2023, 457: 141189.
doi: 10.1016/j.cej.2022.141189 URL |
[9] |
Fan L Y, Li C E, Aravind P V, Weiwei Cai d, Han M F, Brandon N. Methane reforming in solid oxide fuel cells: Challenges and strategies[J]. J. Power Sources, 2022, 538: 231573.
doi: 10.1016/j.jpowsour.2022.231573 URL |
[10] |
Lee K X, Hu B X, Dubey P K, Anisur M R, Belko S, Aphale A N, Singh P. High-entropy alloy anode for direct internal steam reforming of methane in SOFC[J]. Int. J. Hydrog. Energy, 2022, 47(90): 38372-38385.
doi: 10.1016/j.ijhydene.2022.09.018 URL |
[11] |
Lanzini A, Leone P, Guerra C, Smeacetto F, Brandon N P, Santarelli M. Durability of anode supported solid oxides fuel cells (SOFC) under direct dry-reforming of methane[J]. Chem. Eng. J., 2013, 220: 254-263.
doi: 10.1016/j.cej.2013.01.003 URL |
[12] |
Zhang H, Liu W, Wang J X, Yang J, Chen Y, Guan W B, Singhal S C. Power generation from a symmetric flat-tube solid oxide fuel cell using direct internal dry-reforming of methane[J]. J. Power Sources, 2021, 516: 230662.
doi: 10.1016/j.jpowsour.2021.230662 URL |
[13] |
Niakolas D K, Ouweltjes J P, Rietveld G, Dracopoulos V, Neophytides S G. Au-doped Ni/GDC as a new anode for SOFCs operating under rich CH4 internal steam reforming[J]. Int. J. Hydrog. Energy, 2010, 35(15): 7898-7904.
doi: 10.1016/j.ijhydene.2010.05.038 URL |
[14] |
Lin Y C, Wei W C J. Porous Cu-Ni-YSZ cermets using CH4 fuel for SOFC. Int. J. Hydrog. Energy, 2020, 45(46): 24253-24262.
doi: 10.1016/j.ijhydene.2020.05.281 URL |
[15] |
Zhang Y L, Xu N, Fan H, Han M F. La0.6Sr0.4Co0.2Fe0.8O3-δ nanoparticles modified Ni-based anode for direct methane-fueled SOFCs[J]. Energy Procedia, 2019, 158: 2250-2255.
doi: 10.1016/j.egypro.2019.01.179 URL |
[16] |
Lin K W, Wu H W. Hydrogen-rich syngas production and carbon dioxide formation using aqueous urea solution in biogas steam reforming by thermodynamic analysis[J]. Int. J. Hydrog. Energy, 2020, 45(20): 11593-11604.
doi: 10.1016/j.ijhydene.2020.02.127 URL |
[17] |
Kalai D Y, Stangeland K, Jin Y Y, Tucho W M, Yu Z X. Biogas dry reforming for syngas production on La promoted hydrotalcite-derived Ni catalysts[J]. Int. J. Hydrog. Energy, 2018, 43(42): 19438-19450.
doi: 10.1016/j.ijhydene.2018.08.181 URL |
[18] |
Labanca A R C, Cunha A G, Ribeiro R P, Zucolotto C G, Cevolani M B, Schettino M A. Technological solution for distributing vehicular hydrogen using dry plasma reforming of natural gas and biogas[J]. Renew. Energy, 2022, 201: 11-21.
doi: 10.1016/j.renene.2022.11.020 URL |
[19] |
de Souza T A Z, Coronado C J R, Silveira J L, Pint G M. Economic assessment of hydrogen and electricity cogeneration through steam reforming-SOFC system in the Brazilian biodiesel industry[J]. J. Clean Prod., 2021, 279: 123814.
doi: 10.1016/j.jclepro.2020.123814 URL |
[20] |
Chou Y S, Huang M H, Hsu N Y, Jeng K T, Lee R Y, Yen S C. Development of ring-shape supported catalyst for steam reforming of natural gas in small SOFC systems[J]. Int. J. Hydrog. Energy, 2016, 41(30): 12953-12961.
doi: 10.1016/j.ijhydene.2016.06.034 URL |
[21] |
Wu A Q, Li C L, Han B B, Hanson S, Guan W B, Singhal S C. Effect of air addition to the air electrode on the stability and efficiency of carbon dioxide electrolysis by solid oxide cells[J]. Int. J. Hydrog. Energy, 2016, 47(58): 24268-24278.
doi: 10.1016/j.ijhydene.2022.05.207 URL |
[22] | Wu A Q, Li C L, Han B B, Liu W, Zhang Y, Hanson S, Guan W B, Singhal S C. Pulsed electrolysis of carbon dioxide by large-scale solid oxide electrolytic cells for intermittent renewable energy storage[J]. Carbon Energy, 2023, 5(4): 1-12. |
[23] |
Li C L, Wu A Q, Xi C Q, Guan W B, Chen L, Singhal S C. High reversible cycling performance of carbon dioxide electrolysis by flat-tube solid oxide cell[J]. Appl. Energy, 2022, 314: 118969.
doi: 10.1016/j.apenergy.2022.118969 URL |
[24] |
Hu Y Z, Gao J T, Li C X, Li C J. Thermally sprayed MCO/FeCr24 interconnector with improved stability for tubular segmented-in-series SOFCs[J]. Appl. Surf. Sci., 2022, 587: 152861.
doi: 10.1016/j.apsusc.2022.152861 URL |
[25] |
Peña-Álvarez M, del Corro E, Langa F, Baonzaa V G, Taravillo M. Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study[J]. RSC Adv., 2016, 6: 49543-49550.
doi: 10.1039/C5RA27162B URL |
[26] |
Tan K H, Rahman H A, Taib H. Coating layer and influence of transition metal for ferritic stainless steel interconnector solid oxide fuel cell: A review[J]. Int. J. Hydrog. Energy, 2016, 44(58): 30591-30605.
doi: 10.1016/j.ijhydene.2019.06.155 URL |
[27] |
Xu Y J, Wang S R, Liu R Z, Wen T L, Wen Z Y. A novel bilayered Sr0.6La0.4TiO3/La0.8Sr0.2MnO3 interconnector for anode-supported tubular solid oxide fuel cell via slurry-brushing and co-sintering process[J]. J. Power Sources, 2011, 196(3): 1338-1341.
doi: 10.1016/j.jpowsour.2010.07.088 URL |
[28] | Horita T, Kishimoto H, Yamaji K, Xiong Y P, Sakai N, Brito M E, Yokokawa H. Oxide scale formation and stability of Fe-Cr alloy interconnects under dual atmospheres and current flow conditions for SOFCs[J]. J. Electrochem. Soc., 2006, 153: A2007. |
[29] |
Horita T, Kshimoto H, Yamaji K, Sakai N, Xiong Y P, Brito M E, Yokokawa H. Anomalous oxidation of ferritic interconnects in solid oxide fuel cells[J]. Int. J. Hydrog. Energy, 2008, 33(14): 3962-3969.
doi: 10.1016/j.ijhydene.2007.07.058 URL |
[30] |
Zhao L, Zhang J, Becker T, Jiang S P. Raman spectroscopy study of chromium deposition on La0.6Sr0.4Co0.2Fe0.8O3-δ cathode of solid oxide fuel cells[J]. J. Electrochem. Soc., 2014, 161: F687.
doi: 10.1149/2.018406jes URL |
[31] |
Li X X, Blinn K, Chen D C, Liu M L. In situ and surface-enhanced Raman spectroscopy study of electrode materials in solid oxide fuel cells[J]. Electrochem. Energy Rev., 2018, 1: 433-459.
doi: 10.1007/s41918-018-0017-9 |
[32] | Church B C, Sanders T H, Speyer R F, Cochran J K. Thermal expansion matching and oxidation resistance of Fe-Ni-Cr interconnect alloys[J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2007, 452: 334-340. |
[33] | Wu J W, Liu X B. Recent development of SOFC metallic interconnect[J]. J. Mater. Sci. Technol., 2010, 26(4): 293-305. |
[34] |
Tkachenko S, Brodnikovskyi D, Cizek J, Komarov P, Brodnikovskyi Y, Tymoshenko Y, Csáki Š, Pinchuk M, Vasylyev O, Čelko L, Gadzyra M, Chráska T. Novel Ti-Si-C composites for SOFC interconnect materials: Production optimization[J]. Ceram. Int., 2022, 48(19): 27785-27798.
doi: 10.1016/j.ceramint.2022.06.081 URL |
[1] | 倪静, 施兆平, 王显, 王意波, 吴鸿翔, 刘长鹏, 葛君杰, 邢巍. 低铱酸性氧析出电催化剂的研究进展[J]. 电化学(中英文), 2022, 28(9): 2214010-. |
[2] | 应方, 许珊珊, 许燕冰, 梁苗苗, 李剑锋. Fe3O4磁性纳米颗粒催化电化学降解土霉素的研究[J]. 电化学(中英文), 2022, 28(4): 2107141-. |
[3] | 王越, 张立敏, 田阳. 基于电化学分子探针合理设计的高选择性长程活体分析[J]. 电化学(中英文), 2022, 28(3): 2108451-. |
[4] | 李姝谨, 曹志康, 王文凯, 张晓菡, 向兴德. 硫酸盐功能电解液增强水系钠离子电池NaTi2(PO4)3/C负极材料电化学性能的研究[J]. 电化学(中英文), 2021, 27(6): 605-613. |
[5] | 黄夏敏, 张丽红, 吴顺情, 杨勇, 朱梓忠. ANiN(A = Li, Na, Mg, Ca)的结构、热力学、弹性和电子性质的第一性原理研究[J]. 电化学(中英文), 2021, 27(3): 339-350. |
[6] | 孟全华, 邓雯雯, 李长明. 类石墨烯类活性炭材料的简易合成及其在锂硫电池中的应用研究[J]. 电化学(中英文), 2020, 26(5): 740-749. |
[7] | 毛庆, 李冰玉, 景维云, 赵健, 刘松, 黄延强, 杜兆龙. 膜电极构型CO2还原电解单池的稳定性研究[J]. 电化学(中英文), 2020, 26(3): 359-369. |
[8] | 李雪, 龚正良. PEO基聚合物电解质及其锂硫电池性能研究[J]. 电化学(中英文), 2020, 26(3): 338-346. |
[9] | 潘晓娜, 刘丽来, 王治璞, 王丹, 李云, 杨培霞, 张锦秋, 安茂忠. 离子液体凝胶聚合物电解质的三元组分相互作用研究[J]. 电化学(中英文), 2020, 26(3): 406-412. |
[10] | 王杜丹, 王非, 翟欢欢, 李玉鹏, 杨纳川, 陈康华. 富锂层状正极材料Li2MnO3的表面改性及其电化学性能研究[J]. 电化学(中英文), 2020, 26(2): 289-297. |
[11] | 高燕燕,侯明,姜永燚,梁栋,艾军,郑利民. 质子交换膜燃料电池催化层化学稳定性研究[J]. 电化学(中英文), 2018, 24(3): 227-234. |
[12] | 乔文远,郭强,李聪,马爽,王福芝,戴松元,谭占鳌. 基于WOx/PEDOT:PSS复合空穴传输层的高效稳定平面异质结钙钛矿太阳电池[J]. 电化学(中英文), 2016, 22(4): 382-389. |
[13] | 刘晓东,李永舫. 阴极界面修饰层改善平面p-i-n型钙钛矿太阳能电池的光伏性能[J]. 电化学(中英文), 2016, 22(4): 315-331. |
[14] | 代红艳,杨慧敏,刘 宪,简 选,宋秀丽,梁镇海. 不锈钢网阴极微生物燃料电池的产电性能研究[J]. 电化学(中英文), 2016, 22(1): 75-80. |
[15] | 宋平, 阮明波, 刘京, 冉光钧, 徐维林. 燃料电池非铂基氧还原电催化剂的最新研究进展[J]. 电化学(中英文), 2015, 21(2): 130-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||