欢迎访问《电化学(中英文)》期刊官方网站,今天是 分享到:

电化学(中英文) ›› 2022, Vol. 28 ›› Issue (5): 2110021.  doi: 10.13208/j.electrochem.211002

• 论文 • 上一篇    下一篇

Pt/TiO2-CNx催化剂中纳米TiO2 (A)/(R)相含量的电催化“火山形”效应

崔爱林, 白洋, 俞宏英, 孟惠民()   

  1. 北京科技大学新材料技术研究院,北京 100083
  • 收稿日期:2021-12-15 修回日期:2021-12-21 出版日期:2022-05-28 发布日期:2022-01-02
  • 通讯作者: 孟惠民 E-mail:menghm16@126.com
  • 基金资助:
    国家重点研究开发计划(2017YFA0403000);国家高技术研究开发计划(2007AA05Z103)

Electrocatalytic “Volcano-Type” Effect of Nano-TiO2 (A)/(R) Phase Content in Pt/TiO2-CNx Catalyst

Ai-Lin Cui, Yang Bai, Hong-Ying Yu, Hui-Min Meng()   

  1. Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
  • Received:2021-12-15 Revised:2021-12-21 Published:2022-05-28 Online:2022-01-02
  • Contact: Hui-Min Meng E-mail:menghm16@126.com

摘要:

由于燃料电池催化剂的电催化活性与Pt颗粒尺寸、催化剂载体、辅助催化剂的关系仍不清楚。为此,本文采用FESEM、 XRD、 BET、 TEM和CV等方法,以存在Pt纳米颗粒、 CNx纳米线、 TiO2辅助催化剂的多成分复杂结构Pt/TiO2-CNx体系为研究对象,进行了TiO2锐钛矿(A)/金红石(R)相含量对Pt电催化剂电化学活性面积的研究。结果表明,TiO2在700 oC ~ 900 oC热处理过程中发生锐钛矿-金红石相变,同时伴随着两相晶粒尺寸的长大,锐钛矿相在900 oC时完全转化为金红石相。TEM结果表明超细小Pt纳米颗粒成功负载在TiO2-CNx载体表面,粒径尺寸范围为1.8 ~ 2.8 nm。TiO2 (A)/(R)相含量对TiO2-CNx载体的BET比表面积和Pt/TiO2-CNx催化剂真实“有效的”电化学活性面积(ECSA)都存在“火山形”效应。当金红石相含量为25%时,TiO2(25%R)-CNx载体和Pt/TiO2(25%R)-CNx催化剂具有最大的比表面积和最多的电化学活性位点。原因推测可能是随着金红石相含量的增加,当金红石含量为25%时Pt纳米颗粒和TiO2(25%R)-CNx载体之间存在强烈的金属-载体相互作用,可以锚定超细小Pt纳米颗粒,导致Pt/TiO2(25%R)-CNx催化剂具有最高的ECSA。因此,Pt/TiO2(25%R)-CNx较适宜做燃料电池的催化剂。

关键词: 催化剂, TiO2, 锐钛矿, 金红石, 电化学活性面积

Abstract:

The relationship between the electrochemical activity of fuel cell catalysts and Pt particle size, as well as the catalyst support and co-catalyst is still unclear. In this work, FESEM, XRD, BET, TEM and CV techniques were adopted to investigate the effects of TiO2 anatase (A)/rutile (R) phases content on the electrochemical activity of Pt electrocatalyst. The results showed that the anatase-rutile phase transformation occurred during the heat treatment of TiO2 at 700 ~ 900 oC accompanied by the growth of two-phase crystalline size, and anatase was completely transformed into rutile at 900 oC. TEM results revealed that the ultrafine Pt electrocatalysts with the particle size of 1.8 ~ 2.8 nm were successfully prepared over the TiO2-CNx supports. The content of TiO2 (A)/(R) phases had a “volcano-type” effect on both the BET surface area of TiO2-CNx supports and the real “effective” electrochemical active surface area (ECSA) of Pt/TiO2-CNx catalysts. When the rutile content was 25%, the TiO2(25%R)-CNx support and Pt/TiO2(25%R)-CNx catalyst had the largest specific surface area and the most electrochemical active sites, respectively. It is speculated that raising the rutile content, there might be a strong metal-support interaction between Pt nanoparticles and TiO2(25%R)-CNx support with the rutile content of 25%, which could anchor the ultrafine Pt nanoparticles, resulting in the highest ECSA of Pt/TiO2(25%R)-CNx catalyst. Therefore, the Pt/TiO2(25%R)-CNx became more suitable as a catalyst for fuel cells.

Key words: catalyst, TiO2, anatase, rutile, electrochemical active surface area