电化学(中英文) ›› 2023, Vol. 29 ›› Issue (5): 2208121. doi: 10.13208/j.electrochem.2208121
所属专题: “电催化和燃料电池”专题文章
丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌*()
收稿日期:
2022-08-12
修回日期:
2022-09-19
接受日期:
2022-11-14
出版日期:
2023-05-28
发布日期:
2022-11-21
Ming-Yu Ding, Wen-Jie Jiang, Tian-Qi Yu, Xiao-Yan Zhuo, Xiao-Jing Qin, Shi-Bin Yin*()
Received:
2022-08-12
Revised:
2022-09-19
Accepted:
2022-11-14
Published:
2023-05-28
Online:
2022-11-21
Contact:
* Tel: (86-771)3233718; E-mail: 摘要:
开发高活性的大电流密度非贵金属双功能催化剂对于电解水制氢的发展意义重大。本文通过水热法和高温退火处理制备了自生长在泡沫镍上的CeO2电子调控的FeNi双金属复合物多孔纳米片(NiFe2O4-Fe24N10-CeO2/NF)。电化学测试结果表明,NiFe2O4:-Fe24N10-CeO2/NF 在1.0 mol·L-1KOH电解液中具有出色的析氧和析氢反应(OER和HER)活性,在±1000 mA cm-2电流密度下所需的过电位分别为352 mV和429 mV。将其组装成电解水(OWS)两电极体系,只需1.81V的电池电压就能达到100 mA ·cm-2的电流密度。对于OER、HER和OWS,可以在+500 mA cm-2的电流密度下稳定运行30小时,其优异的大电流密度催化性能可以归功于CeO2对于FeNi复合物的电子结构调控增强了催化剂的本征活性和反应中间体的吸附。原位生长在泡沫镍(NF)上的多孔纳米片可以增强活性位点与电解质的接触,并利于气体产物的释放,从而提高其化学稳定性和机械稳定性。本工作为制备双功能非贵金属电解水催化剂提供了一种新思路。
丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121.
Ming-Yu Ding, Wen-Jie Jiang, Tian-Qi Yu, Xiao-Yan Zhuo, Xiao-Jing Qin, Shi-Bin Yin. Electronically Modulated FeNi Composite by CeO2 Porous Nanosheets for Water Splitting at Large Current Density[J]. Journal of Electrochemistry, 2023, 29(5): 2208121.
[1] | Lu H S, He X B, Yin F X, Li G R. Preparations of nickel-iron hydroxide/sulfide and their electrocatalytic performances for overall water splitting[J]. J. Electrochem., 2020, 26(1): 136-147. |
[2] |
Song M, Zhao Y, Wu Z X, Liu X E. MoS2/CoB with Se doping on carbon cloth to drive overall water-splitting in an alkaline electrolyte[J]. Sustain. Energ. Fuels, 2020, 4(10): 5036-5041.
doi: 10.1039/D0SE00864H URL |
[3] |
Ma D D, Shi J W, Sun L W, Sun Y X, Mao S M, Pu Z X, He C, Zhang Y J, He D, Wang H K, Cheng Y H. Knack behind the high performance CdS/ZnS-NiS nanocomposites: Optimizing synergistic effect between cocatalyst and heterostructure for boosting hydrogen evolution[J]. Chem. Eng. J., 2022, 431: 133446.
doi: 10.1016/j.cej.2021.133446 URL |
[4] |
Li Y, Luo Z Y, Ge J J, Liu C P, Xing W. Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. J. Electrochem., 2018, 24(6): 572-588.
doi: 10.13208/j.electrochem.180855 |
[5] |
Chen S S, Hisatomi T, Ma G J, Wang Z, Pan Z H, Takata T, Domen K. Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide[J]. Chin. J. Catal., 2019, 40(11): 1668-1672.
doi: 10.1016/S1872-2067(19)63326-7 |
[6] |
Niu S, Jiang W J, Tang T, Yuan L P, Luo H, Hu J S. Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation[J]. Adv. Funct. Mater., 2019, 29(36): 1902180.
doi: 10.1002/adfm.v29.36 URL |
[7] |
Shi Y M, Yu Y, Liang Y, Du Y H, Zhang B. In situ electrochemical conversion of an ultrathin tannin nickel iron complex film as an efficient oxygen evolution reaction electrocatalyst[J]. Angew. Chem. Int. Ed., 2019, 58(12): 3769-3773.
doi: 10.1002/anie.v58.12 URL |
[8] |
Yu L, Yang J F, Guan B Y, Lu Y, Lou X W. Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution[J]. Angew. Chem., Int. Ed., 2018, 57(1): 172-176.
doi: 10.1002/anie.201710877 pmid: 29178355 |
[9] |
Cui X J, Ren P J, Deng D H, Deng J, Bao X H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation[J]. Energy Environ. Sci., 2016, 9(1): 123-129.
doi: 10.1039/C5EE03316K URL |
[10] |
Tao J Y, Zhang Y J, Wang S P, Wang G, Hu F, Yan X J, Hao L F, Zuo Z J, Yang X W. Activating three-dimensional networks of Fe@Ni nanofibers via fast surface modification for efficient overall water splitting[J]. ACS Appl. Mater. Inter., 2019, 11(20): 18342-18348.
doi: 10.1021/acsami.9b01431 URL |
[11] |
Ma E H, Liu X P, Shen T, Wang D L. Constructing carbon-encapsulated NiFeV-based electrocatalysts by alkoxide-based self-template method for oxygen evolution reaction[J]. J. Electrochem., DOI: 10.13208/j.electrochem.211103.
doi: 10.13208/j.electrochem.211103 |
[12] |
Zou Y J, Xiao B, Shi J W, Hao H, Ma D D, Lv Y X, Sun G T, Li J, Cheng Y H. 3D hierarchical heterostructure assembled by NiFe LDH/(NiFe)Sx on biomass-derived hollow carbon microtubes as bifunctional electrocatalysts for overall water splitting[J]. Electrochim. Acta, 2020, 348: 136339.
doi: 10.1016/j.electacta.2020.136339 URL |
[13] |
Wang M, Zhang L, Pan J L, Huang M R, Zhu H W. A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting[J]. Nano Res., 2021, 14(12): 4740-4747.
doi: 10.1007/s12274-021-3416-5 |
[14] |
Friebel D, Louie M W, Bajdich M, Sanwald K E, Cai Y, Wise A M, Cheng M J, Sokaras D, Weng T C, Alonso M R, Davis R C, Bargar J R, Norskov J K, Nilsson A, Bell A T. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting[J]. J. Am. Chem. Soc., 2015, 137(3): 1305-1313.
doi: 10.1021/ja511559d pmid: 25562406 |
[15] |
Subbaraman R, Tripkovic D, Chang K C, Strmcnik D, Paulikas A P, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic N M. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts[J]. Nat. Mater., 2012, 11(6): 550-557.
doi: 10.1038/nmat3313 pmid: 22561903 |
[16] | Shah J H, Xie Q X, Kuang Z C, Ge R L, Zhou W H, Liu D R, Rykov A I, Li X N, Luo J S, Wang J H. In-situ/operando 57Fe Mössbauer spectroscopic technique and its applications in NiFe-based electrocatalysts for oxygen evolution reaction[J]. J. Electrochem., 2022, 28(3): 2108541. |
[17] |
Chen H Y, Hu M H, Jing P, Liu B C, Gao R, Zhang J. Constructing heterostructure of CeO2/WS2 to enhance catalytic activity and stability toward hydrogen generation[J]. J. Power Sources, 2022, 521: 230948.
doi: 10.1016/j.jpowsour.2021.230948 URL |
[18] |
Zheng Z, Li N, Wang C Q, Li D Y, Zhu Y M, Wu G. Ni-CeO2 composite cathode material for hydrogen evolution reaction in alkaline electrolyte[J]. Int. J. Hydrogen Energy, 2012, 37(19): 13921-13932.
doi: 10.1016/j.ijhydene.2012.07.102 URL |
[19] |
Lu M J, Chen D, Wang B, Li R Q, Cai D, Tu H R, Yang H, Zhang Y P, Han W. Boosting alkaline hydrogen evolution performance of Co4N porous nanowires by interface engineering of CeO2 tuning[J]. J. Mater. Chem. A, 2021, 9(3): 1655-1662.
doi: 10.1039/D0TA08347J URL |
[20] |
Zhang R, Ren X, Hao S, Ge R X, Liu Z A, Asiri A M, Chen L, Zhang Q J, Sun X P. Selective phosphidation: An effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis[J]. J. Mater. Chem. A, 2018, 6(5): 1985-1990.
doi: 10.1039/C7TA10237B URL |
[21] |
Chen Z H, Ma Z P, Song J J, Wang L X, Shao G J. A novel approach for the preparation of Ni-CeO2 composite cathodes with enhanced electrocatalytic activity[J]. RSC Adv., 2016, 6(65): 60806-60814.
doi: 10.1039/C6RA14667H URL |
[22] |
Sivanantham A, Ganesan P, Shanmugam S. A synergistic effect of Co and CeO2 in nitrogen-doped carbon nanostructure for the enhanced oxygen electrode activity and stability[J]. Appl. Catal., B, 2018, 237: 1148-1159.
doi: 10.1016/j.apcatb.2017.08.063 URL |
[23] |
Gao W, Wen D, Ho J C, Qu Y. Incorporation of rare earth elements with transition metal-based materials for electrocatalysis: A review for recent progress[J]. Mater. Today Chem., 2019, 12: 266-281.
doi: 10.1016/j.mtchem.2019.02.002 |
[24] |
Feng J X, Ye S H, Xu H, Tong Y X, Li G R. Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction[J]. Adv. Mater., 2016, 28(23): 4698-4703.
doi: 10.1002/adma.v28.23 URL |
[25] |
Zhou H Q, Yu F, Zhu Q, Sun J Y, Qin F, Yu L, Bao J M, Yu Y, Chen S, Ren Z F. Water splitting by electrolysis at high current densities under 1.6 volts[J]. Energy Environ. Sci., 2018, 11(10): 2858-2864.
doi: 10.1039/C8EE00927A URL |
[26] |
Yu X T, Wang M Y, Gong X Z, Guo Z C, Wang Z, Jiao S Q. Self-supporting porous CoP-based films with phase-separation structure for ultrastable overall water electrolysis at large current density[J]. Adv. Energy Mater., 2018, 8(34): 1802445.
doi: 10.1002/aenm.201802445 URL |
[27] |
Mao L Q, Ba Q Q, Jia X J, Liu S, Liu H, Zhang J, Li X J, Chen W. Ultrathin Ni(OH)2 nanosheets: A new strategy for cocatalyst design on CdS surfaces for photocatalytic hydrogen generation[J]. RSC Adv., 2019, 9(3): 1260-1269.
doi: 10.1039/C8RA07307D URL |
[28] |
Li G L, Zhang X B, Zhang H. Ultrathin 2D Nanosheet based 3D hierarchical hollow polyhedral CoM/C (M = Ni, Cu, Mn) phosphide nanocages as superior electrocatalysts toward oxygen evolution reaction[J]. Chem. Eng. J., 2020, 398: 125467.
doi: 10.1016/j.cej.2020.125467 URL |
[29] |
Wang J Y, Zhu R L, Cheng J L, Song Y Y, Mao M, Chen F F, Cheng Y L. Co, Mo2C encapsulated in N-doped carbon nanofiber as self-supported electrocatalyst for hydrogen evolution reaction[J]. Chem. Eng. J., 2020, 397: 125481.
doi: 10.1016/j.cej.2020.125481 URL |
[30] |
Yu T Q, Xu Q L, Luo L, Liu C R, Yin S B. Interface engineering of NiO/RuO2 heterojunction nano-sheets for robust overall water splitting at large current density[J]. Chem. Eng. J., 2022, 430: 133117.
doi: 10.1016/j.cej.2021.133117 URL |
[31] |
Ji R Y, Chan D S, Jow J J, Wu M S. Formation of open-ended nickel hydroxide nanotubes on three-dimensional nickel framework for enhanced urea electrolysis[J]. Electrochem. Commun., 2013, 29: 21-24.
doi: 10.1016/j.elecom.2013.01.006 URL |
[32] |
Wang Y M, Qian G F, Xu Q L, Zhang H, Shen F, Luo L, Yin S B. Industrially promising IrNi-FeNi3 hybrid nanosheets for overall water splitting catalysis at large current density[J]. Appl. Catal., B, 2021, 286: 119881.
doi: 10.1016/j.apcatb.2021.119881 URL |
[33] |
Sun Z H, Cao X C, Gonzalez M I G, Rümmeli M H, Yang R Z. Enhanced electrocatalytic activity of FeCo2O4 interfacing with CeO2 for oxygen reduction and evolution reactions[J]. Electrochem. Commun., 2018, 93: 35-38.
doi: 10.1016/j.elecom.2018.06.001 URL |
[34] |
Trotochaud L, Young S L, Ranney J K, Boettcher S W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation[J]. J. Am. Chem. Soc., 2014, 136(18): 6744-6753.
doi: 10.1021/ja502379c pmid: 24779732 |
[35] |
Feng Z H, Pu J Y, Liu M S, Zhang W X, Zhang X Y, Cui L, Liu J Q. Facile construction of hierarchical Co3S4/CeO2 heterogeneous nanorod array on cobalt foam for electrocatalytic overall water splitting[J]. J. Colloid Interface Sci., 2022, 613: 806-813.
doi: 10.1016/j.jcis.2022.01.081 URL |
[36] |
Chen L L, Jang H, Kim M G, Qin Q, Liu X, Cho J. FexNiy/CeO2 loaded on N-doped nanocarbon as an advanced bifunctional electrocatalyst for the overall water splitting[J]. Inorg. Chem. Front., 2020, 7(2): 470-476.
doi: 10.1039/C9QI01251F URL |
[37] |
Park K R, Tran D T, Nguyen T T, Kim N H, Lee J H. Copper-incorporated heterostructures of amorphous NiSex/Crystalline NiSe2 as an efficient electrocatalyst for overall water splitting[J]. Chem. Eng. J., 2021, 422: 130048.
doi: 10.1016/j.cej.2021.130048 URL |
[38] |
Zhang J, Wang T, Rellinghaus D P B, Dong R H, Liu S H, Zhuang X D, Feng X L. Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity[J]. Angew. Chem., Int. Ed., 2016, 55(23): 6702-6707.
doi: 10.1002/anie.201602237 pmid: 27100374 |
[39] |
Qian G F, Chen J L, Luo L, Zhang H, Chen W, Gao Z J, Yin S B, Tsiakaras P. Novel bifunctional V2O3 nanosheets coupled with N-doped-carbon encapsulated Ni heterostructure for enhanced electrocatalytic oxidation of urea-rich wastewater[J]. ACS Appl. Mater. Inter., 2020, 12(34): 38061-38069.
doi: 10.1021/acsami.0c09319 URL |
[40] |
Wu M X, Zhang G X, Qiao J L, Chen N, Chen W F, Sun S H. Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts[J]. Nano Energy, 2019, 61: 86-95.
doi: 10.1016/j.nanoen.2019.04.031 URL |
[41] |
Watkins M B, Foster A S, Shluger A L. Hydrogen cycle on CeO2(111) surfaces: Density functional theory calculations[J]. J. Phys. Chem. C, 2007, 111(42): 15337-15341.
doi: 10.1021/jp071715s URL |
[1] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
[2] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
[3] | 陈发东, 谢卓洋, 李孟婷, 陈四国, 丁炜, 李莉, 李静, 魏子栋. 系列综述(1/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:燃料电池高性能氧还原催化剂[J]. 电化学(中英文), 2024, 30(7): 2314007-. |
[4] | 揭亮华, 徐海超. 电催化活性亚甲基化合物的环丙烷化反应[J]. 电化学(中英文), 2024, 30(4): 2313001-. |
[5] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
[6] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[7] | 杨云锐, 董欢欢, 郝志强, 何祥喜, 杨卓, 李林, 侴术雷. 高性能锂硫电池用钴/碳复合材料硫宿主[J]. 电化学(中英文), 2023, 29(4): 2217003-. |
[8] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[9] | 温波, 朱卓, 李福军. 锂-氧气电池:正极催化剂的最新进展与挑战[J]. 电化学(中英文), 2023, 29(2): 2215001-. |
[10] | 孟庆成, 金林薄, 马梦泽, 高学庆, 陈爱兵, 周道金, 孙晓明. 层状金属氢氧化物中铁位点辅助分散铂纳米颗粒用于高效甲醇氧化[J]. 电化学(中英文), 2023, 29(2): 2215007-. |
[11] | 马恩辉, 刘旭坡, 申涛, 王得丽. 醇盐自模板法构筑碳封装NiFeV基电催化剂用于析氧反应[J]. 电化学(中英文), 2023, 29(11): 211103-. |
[12] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[13] | 李渊, 陈妙迎, 卢帮安, 张佳楠. 高活性和耐久性非铂氧还原催化剂的研究进展[J]. 电化学(中英文), 2023, 29(1): 2215002-. |
[14] | 李家欣, 冯立纲. 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学(中英文), 2022, 28(9): 2214001-. |
[15] | 郭丹丹, 俞红梅, 迟军, 邵志刚. 自支撑NiFe LDHs@Co-OH-CO3纳米棒阵列电极用于碱性阴离子交换膜电解水[J]. 电化学(中英文), 2022, 28(9): 2214003-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||