电化学(中英文) ›› 2022, Vol. 28 ›› Issue (9): 2214001. doi: 10.13208/j.electrochem.2214001
所属专题: “电催化和燃料电池”专题文章
收稿日期:
2022-04-06
修回日期:
2022-04-11
出版日期:
2022-09-28
发布日期:
2022-04-25
Received:
2022-04-06
Revised:
2022-04-11
Published:
2022-09-28
Online:
2022-04-25
Contact:
* Tel: (86)17306299692, E-mail: 摘要:
析氧反应(OER)是水分解中重要的半反应, 为提高其催化性能,开发高效非贵金属催化剂已成为当前的研究重点。铁镍(FeNi)基材料被认为是最好的预催化剂, 在催化过程中,它们的表面将转变成高价态金属氧化物或氢氧化物作为真正的活性物质。FeNi基预催化剂的结构和形貌在很大程度上影响了其催化性能, 因此, 优化和调整FeNi基预催化剂的结构和化学环境可以提高电催化性能。基于我们的研究工作, 我们撰写了FeNi基预催化剂的表面结构调控促进电化学析氧反应的研究进展。我们首先介绍了碱性OER的反应机理, 然后从杂原子掺杂、表面成分改性、选择性结构转变、表面化学状态调节、异质结构构建和载体效应等方面讨论了FeNi基预催化剂表面调控对析氧反应性能的影响。尽管在OER反应中FeNi都被认为转变成高价态的金属活性物质, Fe/Ni体系的表面结构、形貌和化学状态仍然能够显著影响其最终的催化性能, 即FeNi基预催化剂的性质会影响析氧反应的催化性能。通过精细设计并尽量提高Fe和Ni的协同作用将有利用提升氧析出的催化性能。我们希望本综述能够对FeNi基预催化剂的制备和表界面性质调控与电催化析氧反应性能的理解有所帮助。
李家欣, 冯立纲. 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学(中英文), 2022, 28(9): 2214001.
Jia-Xin Li, Li-Gang Feng. Surface Structure Engineering of FeNi-Based Pre-Catalyst for Oxygen Evolution Reaction: A Mini Review[J]. Journal of Electrochemistry, 2022, 28(9): 2214001.
[1] |
Liu P F, Yin H J, Fu H Q, Zu M Y, Yang H G, Zhao H J. Activation strategies of water-splitting electrocatalysts[J]. J. Mater. Chem. A, 2020, 8(20): 10096-10129.
doi: 10.1039/D0TA01680B URL |
[2] |
Yuan N N, Jiang Q Q, Li J, Tang J G. A review on non-no-ble metal based electrocatalysis for the oxygen evolution reaction[J]. Arab. J. Chem., 2020, 13(2): 4294-4309.
doi: 10.1016/j.arabjc.2019.08.006 URL |
[3] |
Han L, Dong S J, Wang E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction[J]. Adv. Mater., 2016, 28(42): 9266-9291.
doi: 10.1002/adma.201602270 URL |
[4] |
Wu Y J, Yang J, Tu T X, Li W Q, Zhang P F, Zhou Y, Li J F, Li J T, Sun S G. Evolution of cationic vacancy defects: A motif for surface restructuration of OER precatalyst[J]. Angew. Chem. Int. Edit., 2021, 60(51): 26829-26836.
doi: 10.1002/anie.202112447 URL |
[5] |
Fabbri E, Schmidt T J. Oxygen evolution reaction-the enigma in water electrolysis[J]. ACS Catal., 2018, 8(10): 9765-9774.
doi: 10.1021/acscatal.8b02712 URL |
[6] |
Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S, Nocera D G. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chem. Rev., 2010, 110(11): 6474-6502.
doi: 10.1021/cr100246c pmid: 21062098 |
[7] |
Rossmeisl J, Qu Z W, Zhu H, Kroes G J, Norskov J K. Electrolysis of water on oxide surfaces[J]. J. Electroanal. Chem., 2007, 607(1-2): 83-89.
doi: 10.1016/j.jelechem.2006.11.008 URL |
[8] |
Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Norskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
doi: 10.1002/cctc.201000397 URL |
[9] |
Xu Q C, Zhang J H, Zhang H X, Zhang L Y, Chen L, Hu Y J, Jiang H, Li C Z. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting[J]. Energ. Environ. Sci., 2021, 14(10): 5228-5259.
doi: 10.1039/D1EE02105B URL |
[10] |
Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chem. Soc. Rev., 2017, 46(2): 337-365.
doi: 10.1039/C6CS00328A URL |
[11] |
Ahn H S, Bard A J. Surface interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) oxygen evolving catalyst: Kinetics of the “fast” iron sites[J]. J. Am. Chem. Soc., 2016, 138(1): 313-318.
doi: 10.1021/jacs.5b10977 URL |
[12] |
Li N, Bediako D K, Hadt R G, Hayes D, Kempa T J, von Cube F, Bell D C, Chen L X, Nocera D G. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films[J]. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(7): 1486-1491.
doi: 10.1073/pnas.1620787114 URL |
[13] |
Zhong L, Bao Y F, Yu X, Feng L G. An Fe-doped NiTe bulk crystal as a robust catalyst for the electrochemical oxygen evolution reaction[J]. Chem. Commun., 2019, 55(63): 9347-9350.
doi: 10.1039/C9CC04429A URL |
[14] |
Zhang J F, Liu J Y, Xi L F, Yu Y F, Chen N, Sun S H, Wang W C, Lange K M, Zhang B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(11): 3876-3879.
doi: 10.1021/jacs.8b00752 pmid: 29518310 |
[15] |
Li Y F, Selloni A. Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx[J]. ACS Catal., 2014, 4(4): 1148-1153.
doi: 10.1021/cs401245q URL |
[16] |
Li D Z, Liu H, Feng L G. A review on advanced FeNi-based catalysts for water splitting reaction[J]. Energ. Fuel., 2020, 34(11): 13491-13522.
doi: 10.1021/acs.energyfuels.0c03084 URL |
[17] |
Hou G Y, Wu J, Li T, Lin J, Wang B F, Peng L, Yan T, Hao L S, Qiao L X, Wu X F. Nitrogen-rich biomass derived three-dimensional porous structure captures FeNi metal nanospheres: An effective electrocatalyst for oxygen evolution reaction[J]. Int. J. Hydrogen. Energ., 2022, 47(25): 12487-12499.
doi: 10.1016/j.ijhydene.2022.02.004 URL |
[18] |
Li X M, Hao X G, Wang Z D, Abudula A, Guan G Q. In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting[J]. J. Power Sources, 2017, 347: 193-200.
doi: 10.1016/j.jpowsour.2017.02.062 URL |
[19] |
Gu Y, Chen S, Ren J, Jia Y A, Chen C M, Komarneni S, Yang D J, Yao X D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting[J]. ACS Nano, 2018, 12(1): 245-253.
doi: 10.1021/acsnano.7b05971 URL |
[20] |
Ren J T, Wang Y S, Chen L, Gao L J, Tian W W, Yuan Z Y. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries[J]. Chem. Eng. J., 2020, 389: 124408.
doi: 10.1016/j.cej.2020.124408 URL |
[21] |
Gong M, Dai H J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Res., 2015, 8(1): 23-39.
doi: 10.1007/s12274-014-0591-z URL |
[22] |
Mohammed-Ibrahim J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction[J]. J. Power. Sources, 2020, 448: 227375.
doi: 10.1016/j.jpowsour.2019.227375 URL |
[23] |
Kang Q L, Lai D W, Tang W Y, Lu Q Y, Gao F. Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction[J]. Chem. Sci., 2021, 12(11): 3818-3835.
doi: 10.1039/d0sc06716d pmid: 34163652 |
[24] |
Solomon G, Landström A, Mazzaro R, Jugovac M, Moras P, Cattaruzza E, Morandi V, Concina I, Vomiero A. NiMoO4@Co3O4 core-shell nanorods: in situ catalyst reconstruction toward high efficiency oxygen evolution reaction[J]. Adv. Energy Mater., 2021, 11(32): 2101324.
doi: 10.1002/aenm.202101324 URL |
[25] |
Yan Y, Xia B Y, Zhao B, Wang X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. J. Mater. Chem. A, 2016, 4(45): 17587-17603.
doi: 10.1039/C6TA08075H URL |
[26] |
Dionigi F, Zeng Z H, Sinev I, Merzdorf T, Deshpande S, Lopez M B, Kunze S, Zegkinoglou I, Sarodnik H, Fan D X, Bergmann A, Drnec J, de Araujo J F, Gliech M, Teschner D, Zhu J, Li W X, Greeley J, Cuenya B R, Strasser P. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution[J]. Nat. Commun., 2020, 11(1): 2522.
doi: 10.1038/s41467-020-16237-1 pmid: 32433529 |
[27] |
Smith R D L, Pasquini C, Loos S, Chernev P, Klingan K, Kubella P, Mohammadi M R, Gonzalez-Flores D, Dau H. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides[J]. Nat. Commun., 2017, 8: 2022.
doi: 10.1038/s41467-017-01949-8 pmid: 29222428 |
[28] |
Jörissen L. Bifunctional oxygen/air electrodes[J]. J. Power. Sources, 2006, 155(1): 23-32.
doi: 10.1016/j.jpowsour.2005.07.038 URL |
[29] |
Hunter B M, Gray H B, Müller A M. Earth-abundant heterogeneous water oxidation catalysts[J]. Chem. Rev., 2016, 116(22): 14120-14136.
pmid: 27797490 |
[30] |
Plevová M, Hnát J, Bouzek K. Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review[J]. J. Power. Sources, 2021, 507: 230072.
doi: 10.1016/j.jpowsour.2021.230072 URL |
[31] |
Xue Z, Zhang X Y, Qin J Q, Liu R P. Revealing Ni-based layered double hydroxides as high-efficiency electrocatalysts for the oxygen evolution reaction: A DFT study[J]. J. Mater. Chem. A, 2019, 7(40): 23091-23097.
doi: 10.1039/C9TA06686A URL |
[32] |
Zhu K Y, Zhu X F, Yang W S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts[J]. Angew. Chem. Int. Edit., 2019, 58(5): 1252-1265.
doi: 10.1002/anie.201802923 URL |
[33] |
Ali-Löytty H, Louie M W, Singh M R, Li L, Casalongue H G S, Ogasawara H, Crumlin E J, Liu Z, Bell A T, Nilsson A, Friebel D. Ambient-pressure XPS study of a Ni-Fe electrocatalyst for the oxygen evolution reaction[J]. J. Phys. Chem. C, 2016, 120(4): 2247-2253.
doi: 10.1021/acs.jpcc.5b10931 URL |
[34] |
Qiu Z, Ma Y, Edvinsson T. In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting[J]. Nano Energy, 2019, 66: 104118.
doi: 10.1016/j.nanoen.2019.104118 URL |
[35] |
Wang D N, Zhou J G, Hu Y F, Yang J L, Han N, Li Y G, Sham T K. In situ X-ray absorption near-edge structure study of advanced NiFe(OH)x electrocatalyst on carbon paper for water oxidation[J]. J. Phys. Chem. C, 2015, 119(34): 19573-19583.
doi: 10.1021/acs.jpcc.5b02685 URL |
[36] |
Chen J Y C, Dang L N, Liang H F, Bi W L, Gerken J B, Jin S, Alp E E, Stahl S S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: Detection of Fe4+ by Mössbauer spectroscopy[J]. J. Am. Chem. Soc., 2015, 137(48): 15090-15093.
doi: 10.1021/jacs.5b10699 URL |
[37] |
Trotochaud L, Young S L, Ranney J K, Boettcher S W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation[J]. J. Am. Chem. Soc., 2014, 136(18): 6744-6753.
doi: 10.1021/ja502379c pmid: 24779732 |
[38] |
Zhang G W, Zeng J R, Yin J, Zuo C Y, Wen P, Chen H T, Qiu Y J. Iron-facilitated surface reconstruction to in-situ generate nickel-iron oxyhydroxide on self-supported FeNi alloy fiber paper for efficient oxygen evolution reaction[J]. Appl. Catal. B., 2021, 286: 119902.
doi: 10.1016/j.apcatb.2021.119902 URL |
[39] |
Tedstone A A, Lewis D J, O’Brien P. Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides[J]. Chem. Mater., 2016, 28(7): 1965-1974.
doi: 10.1021/acs.chemmater.6b00430 URL |
[40] |
Saleh N B, Milliron D J, Aich N, Katz L E, Liljestrand H M, Kirisits M J. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species[J]. Sci. Total Environ., 2016, 568: 926-932.
doi: 10.1016/j.scitotenv.2016.06.145 URL |
[41] |
Wang J, Gao Y, You T L, Ciucci F. Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting[J]. J. Power. Sources, 2018, 401: 312-321.
doi: 10.1016/j.jpowsour.2018.09.011 URL |
[42] |
Yang Y S, Zhuang L Z, Lin R J, Li M R, Xu X Y, Rufford T E, Zhu Z H. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation[J]. J. Power. Sources, 2017, 349: 68-74.
doi: 10.1016/j.jpowsour.2017.03.028 URL |
[43] |
Liu J L, Zhu D D, Ling T, Vasileff A, Qiao S Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH[J]. Nano Energy, 2017, 40: 264-273.
doi: 10.1016/j.nanoen.2017.08.031 URL |
[44] |
Xuan C J, Wang J, Xia W W, Zhu J, Peng Z K, Xia K D, Xiao W P, Xin H L L, Wang D L. Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction[J]. J. Mater. Chem. A, 2018, 6(16): 7062-7069.
doi: 10.1039/C8TA00410B URL |
[45] |
Liu Z, Yu X, Yu H G, Xue H G, Feng L G. Nanostructured FeNi3 incorporated with carbon doped with multiple nonmetal elements for the oxygen evolution reaction[J]. ChemSusChem, 2018, 11(16): 2703-2709.
doi: 10.1002/cssc.201801250 URL |
[46] |
Yang Y, Su J W, Jiang P, Chen J T, Hu L, Chen Q W. MOFs-derived N-doped carbon-encapsulated metal/alloy electrocatalysts to tune the electronic structure and reactivity of carbon active sites[J]. Chinese J. Chem., 2021, 39(9): 2626-2637.
doi: 10.1002/cjoc.202100207 URL |
[47] |
Wu H H, Wang J, Wang G X, Cai F, Ye Y F, Jiang Q K, Sun S C, Miao S, Bao X H. High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer[J]. Nano Energy, 2016, 30: 801-809.
doi: 10.1016/j.nanoen.2016.09.016 URL |
[48] |
Du L, Luo L L, Feng Z X, Engelhard M, Xie X H, Han B H, Sun J M, Zhang J H, Yin G P, Wang C M, Wang Y, Shao Y Y. Nitrogen-doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst[J]. Nano Energy, 2017, 39: 245-252.
doi: 10.1016/j.nanoen.2017.07.006 URL |
[49] |
Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation[J]. Nat. Commun., 2013, 4(1): 2390.
doi: 10.1038/ncomms3390 URL |
[50] |
Cui X J, Ren P J, Deng D H, Deng J, Bao X H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation[J]. Energ. Environ. Sci., 2016, 9(1): 123-129.
doi: 10.1039/C5EE03316K URL |
[51] |
Lyons M E G, Doyle R L, Fernandez D, Godwin I J, Browne M P, Rovetta A. The mechanism and kinetics of electrochemical water oxidation at oxidized metal and metal oxide electrodes. Part 2. The surfaquo group mechanism: A mini review[J]. Electrochem. Commun., 2014, 45: 56-59.
doi: 10.1016/j.elecom.2014.04.019 URL |
[52] | Liu Z, Yu H G, Dong B X, Yu X, Feng L G. Electrochemical oxygen evolution reaction efficiently boosted by thermal-driving core-shell structure formation in nanostructured FeNi/S, N-doped carbon hybrid catalyst[J]. Nano-scale, 2018, 10(35): 16911-16918. |
[53] |
Joo J, Kim T, Lee J, Choi S I, Lee K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting[J]. Adv. Mater., 2019, 31(14): 1806682.
doi: 10.1002/adma.201806682 URL |
[54] |
Burke M S, Enman L J, Batchellor A S, Zou S H, Boettch-er S W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles[J]. Chem. Mater., 2015, 27(22): 7549-7558.
doi: 10.1021/acs.chemmater.5b03148 URL |
[55] |
Manso R H, Acharya P, Deng S Q, Crane C C, Reinhart B, Lee S, Tong X, Nykypanchuk D, Zhu J, Zhu Y M, Greenlee L F, Chen J Y. Controlling the 3-D morphology of Ni-Fe-based nanocatalysts for the oxygen evolution reaction[J]. Nanoscale, 2019, 11(17): 8170-8184.
doi: 10.1039/c8nr10138h pmid: 30775739 |
[56] |
Stern L A, Feng L G, Song F, Hu X L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles[J]. Energ. Environ. Sci., 2015, 8(8): 2347-2351.
doi: 10.1039/C5EE01155H URL |
[57] |
Liu Z, Tang B, Gu X C, Liu H, Feng L G. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity[J]. Chem. Eng. J., 2020, 395: 125170.
doi: 10.1016/j.cej.2020.125170 URL |
[58] |
Liu Z, Liu D Y, Zhao L Y, Tian J Q, Yang J, Feng L G. Efficient overall water splitting catalyzed by robust FeNi3N nanoparticles with hollow interiors[J]. J. Mater. Chem. A, 2021, 9(12): 7750-7758.
doi: 10.1039/D1TA01014J URL |
[59] |
Lv L, Li Z S, Xue K H, Ruan Y J, Ao X, Wan H Z, Miao X S, Zhang B S, Jiang J J, Wang C D, Ostrikov K. Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation[J]. Nano Energy, 2018, 47: 275-284.
doi: 10.1016/j.nanoen.2018.03.010 URL |
[60] |
Liu L N, Yan F, Li K Y, Zhu C L, Xie Y, Zhang X T, Chen Y J. Ultrasmall FeNi3N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts[J]. J. Mater. Chem. A, 2019, 7(3): 1083-1091.
doi: 10.1039/C8TA10083G URL |
[61] |
Wang H, Li J M, Li K, Lin Y P, Chen J M, Gao L J, Nicolosi V, Xiao X, Lee J M. Transition metal nitrides for electrochemical energy applications[J]. Chem. Soc. Rev., 2021, 50(2): 1354-1390.
doi: 10.1039/d0cs00415d pmid: 33295369 |
[62] |
Chen Y K, Yu J Y, Jia J, Liu F, Zhang Y W, Xiong G W, Zhang R T, Yang R Q, Sun D H, Liu H, Zhou W J. Metallic Ni3Mo3N porous microrods with abundant catalytic sites as efficient electrocatalyst for large current density and superstability of hydrogen evolution reaction and water splitting[J]. Appl. Catal. B., 2020, 272: 118956.
doi: 10.1016/j.apcatb.2020.118956 URL |
[63] | Li D, Xing Y Y, Yang R, Wen T, Jiang D L, Shi W D, Yuan S Q. Holey cobalt-iron nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting[J]. ACS Appl. Mater. Interfaces, 2020, 12(26): 29253-29263. |
[64] |
Kwag S H, Lee Y S, Lee J, Jeong D I, Kwon S B, Yoo J H, Woo S, Lim B S, Park W K, Kim M J, Kim J H, Lim B, Kang B K, Yang W S, Yoon D H. Design of 2D nanocrystalline Fe2Ni2N coated onto graphene nanohybrid sheets for efficient electrocatalytic oxygen evolution[J]. ACS Appl. Energ. Mater., 2019, 2(12): 8502-8510.
doi: 10.1021/acsaem.9b01434 URL |
[65] |
Chen Q, Wang R, Yu M H, Zeng Y X, Lu F Q, Kuang X J, Lu X H. Bifunctional iron-nickel nitride nanoparticles as flexible and robust electrode for overall water splitting[J]. Electrochim. Acta, 2017, 247: 666-673.
doi: 10.1016/j.electacta.2017.07.025 URL |
[66] |
Kumar Y, Kibena-Põldsepp E, Kozlova J, Rähn M, Tre-shchalov A, Kikas A, Kisand V, Aruväli J, Tamm A, Douglin J C, Folkman S J, Gelmetti I, Garcés-Pineda F A, Galán-Mascarós J R, Dekel D R, Tammeveski K. Bifunctional oxygen electrocatalysis on mixed metal phthalocyanine-modified carbon nanotubes prepared via pyrolysis[J]. ACS Appl. Mater. Interfaces, 2021, 13(35): 41507-41516.
doi: 10.1021/acsami.1c06737 URL |
[67] |
Yan F, Wang Y, Li K Y, Zhu C L, Gao P, Li C Y, Zhang X T, Chen Y J. Highly stable three-dimensional porous nickel-iron nitride nanosheets for full water splitting at high current densities[J]. Chem. Eur. J., 2017, 23(42): 10187-10194.
doi: 10.1002/chem.201701662 URL |
[68] |
Lu T, Dong S M, Zhang C J, Zhang L X, Cui G L. Fabrication of transition metal selenides and their applications in energy storage[J]. Coordin. Chem. Rev., 2017, 332: 75-99.
doi: 10.1016/j.ccr.2016.11.005 URL |
[69] |
Li M, Liu H, Feng L G. Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: A mini review[J]. Electrochem. Commun., 2021, 122: 106901.
doi: 10.1016/j.elecom.2020.106901 URL |
[70] |
Zha M, Pei C G, Wang Q, Hu G Z, Feng L G. Electrochemical oxygen evolution reaction efficiently boosted by selective fluoridation of FeNi3 alloy/oxide hybrid[J]. J. Energy Chem., 2020, 47: 166-171.
doi: 10.1016/j.jechem.2019.12.008 URL |
[71] |
Pei C G, Gu Y, Liu Z, Yu X, Feng L G. Fluoridated iron-nickel layered double hydroxide for enhanced performance in the oxygen evolution reaction[J]. ChemSusChem, 2019, 12(16): 3849-3855.
doi: 10.1002/cssc.201901153 pmid: 31225718 |
[72] |
Su X Z, Wang Y, Zhou J, Gu S Q, Li J, Zhang S. Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(36): 11286-11292.
doi: 10.1021/jacs.8b05294 pmid: 30111100 |
[73] |
Liu H, Zha M, Liu Z, Tian J Q, Hu G Z, Feng L G. Synergistically boosting the oxygen evolution reaction of an Fe-MOF via Ni doping and fluorination[J]. Chem. Commun., 2020, 56(57): 7889-7892.
doi: 10.1039/D0CC03422C URL |
[74] |
Gu X C, Liu Z, Li M, Tian J Q, Feng L G. Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction[J]. Appl. Catal. B., 2021, 297: 120462.
doi: 10.1016/j.apcatb.2021.120462 URL |
[75] |
Trzešniewski B J, Diaz-Morales O, Vermaas D A, Longo A, Bras W, Koper M T M, Smith W A. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity[J]. J. Am. Chem. Soc., 2015, 137(48): 15112-15121.
doi: 10.1021/jacs.5b06814 URL |
[76] |
Yu L, Zhu Q, Song S W, McElhenny B, Wang D Z, Wu C Z, Qin Z J, Bao J M, Yu Y, Chen S, Ren Z F. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J]. Nat. Commun., 2019, 10(1): 5106.
doi: 10.1038/s41467-019-13092-7 pmid: 31704926 |
[77] |
Zhang G W, Wang B, Li L, Yang S, Liu J M, Yang S C. Tailoring the electronic structure by constructing the heterointerface of RuO2-NiO for overall water splitting with ultralow overpotential and extra-long lifetime[J]. J. Mater. Chem. A, 2020, 8(36): 18945-18954.
doi: 10.1039/D0TA06565J URL |
[78] | Pan S Y, Ma S X, Chang C F, Long X, Qu K G, Yang Z H. Activation of rhodium selenides for boosted hydrogen evolution reaction via heterostructure construction[J]. Mater. Today Phys., 2021, 18: 100401. |
[79] |
Liang S Q, Jing M Z, Pervaiz E, Guo H C, Thomas T, Song W Y, Xu J, Saad A, Wang J C, Shen H J, Liu J, Yang M H. Nickel-iron nitride-nickel sulfide composites for oxygen evolution electrocatalysis[J]. ACS Appl. Mater. Interfaces, 2020, 12(37): 41464-41470.
doi: 10.1021/acsami.0c11324 URL |
[80] |
An L, Zhang Z Y, Feng J R, Lv F, Li Y X, Wang R, Lu M, Gupta R B, Xi P X, Zhang S. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte[J]. J. Am. Chem. Soc., 2018, 140(50): 17624-17631.
doi: 10.1021/jacs.8b09805 pmid: 30403846 |
[81] |
Wu Y, Li F, Chen W L, Xiang Q, Ma Y L, Zhu H, Tao P, Song C Y, Shang W, Deng T, Wu J B. Coupling interface constructions of MoS2/Fe5Ni4S8 heterostructures for efficient electrochemical water splitting[J]. Adv. Mater., 2018, 30(38): 1803151.
doi: 10.1002/adma.201803151 URL |
[82] |
Yu H Z, Xie Y Y, Deng L M, Huang H J, Song J N, Yu D S, Li L L, Peng S J. In situ construction of FeNi2Se4-FeNi LDH heterointerfaces with electron redistribution for enhanced overall water splitting[J]. Inorg. Chem. Front., 2022, 9(1): 146-154.
doi: 10.1039/D1QI01185E URL |
[83] |
Yin Z Z, He R Z, Zhang Y C, Feng L G, Wu X, Wägberg T, Hu G Z. Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction[J]. J. Energy Chem., 2022, 69: 585-592.
doi: 10.1016/j.jechem.2022.01.020 URL |
[84] |
Shah S A, Ji Z Y, Shen X P, Yue X Y, Zhu G X, Xu K Q, Yuan A H, Ullah N, Zhu J, Song P, Li X Y. Thermal synthesis of FeNi@Nitrogen-doped graphene dispersed on nitrogen-doped carbon matrix as an excellent electrocatalyst for oxygen evolution reaction[J]. ACS Appl. Energ. Mater., 2019, 2(6): 4075-4083.
doi: 10.1021/acsaem.9b00199 URL |
[85] |
Li X F, Ma D D, Cao C S, Zou R Q, Xu Q, Wu X T, Zhu Q L. Inlaying ultrathin bimetallic MOF nanosheets into 3D ordered macroporous hydroxide for superior electrocataly-tic oxygen evolution[J]. Small, 2019, 15(35): 1902218.
doi: 10.1002/smll.201902218 URL |
[86] |
Feng Y, Han H, Kim K M, Dutta S, Song T. Self-templated Prussian blue analogue for efficient and robust electrochemical water oxidation[J]. J. Catal., 2019, 369: 168-174.
doi: 10.1016/j.jcat.2018.11.005 |
[87] |
Gong M, Li Y G, Wang H L, Liang Y Y, Wu J Z, Zhou J G, Wang J, Regier T, Wei F, Dai H J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. J. Am. Chem. Soc., 2013, 135(23): 8452-8455.
doi: 10.1021/ja4027715 pmid: 23701670 |
[88] |
Yu X W, Zhang M, Yuan W J, Shi G Q. A high-performance three-dimensional Ni-Fe layered double hydroxide/graphene electrode for water oxidation[J]. J. Mater. Chem. A, 2015, 3(13): 6921-6928.
doi: 10.1039/C5TA01034A URL |
[89] | Li J X, Wang S L, Chang J F, Feng L G. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction[J]. Adv. Powder. Mater., 2022, 1(3): 100030. |
[1] | 丁明宇, 蒋文杰, 余天琦, 卓小燕, 覃晓静, 尹诗斌. CeO2电子调控FeNi纳米片大电流密度电解水催化剂[J]. 电化学(中英文), 2023, 29(5): 2208121-. |
[2] | 化五星, 夏静怡, 胡忠豪, 李欢, 吕伟, 杨全红. 多活性中心双金属硫化物促进多硫化锂转化构建高性能锂硫电池[J]. 电化学(中英文), 2023, 29(3): 2217006-. |
[3] | 郭丹丹, 俞红梅, 迟军, 邵志刚. 自支撑NiFe LDHs@Co-OH-CO3纳米棒阵列电极用于碱性阴离子交换膜电解水[J]. 电化学(中英文), 2022, 28(9): 2214003-. |
[4] | Jafar Hussain Shah, 谢起贤, 匡智崇, 格日乐, 周雯慧, 刘朵绒, Alexandre I. Rykov, 李旭宁, 罗景山, 王军虎. 原位57Fe穆斯堡尔光谱技术及其在Ni-Fe基析氧反应电催化剂中的应用[J]. 电化学(中英文), 2022, 28(3): 2108541-. |
[5] | 张丽桦, 揣宏媛, 刘海, 范群, 况思宇, 张生, 马新宾. 尖晶石钴氧化物的晶面调控与析氧活性研究[J]. 电化学(中英文), 2022, 28(2): 2108481-. |
[6] | 庄志华, 陈卫. 原子数精确的金属纳米团簇在电催化领域的应用研究进展[J]. 电化学(中英文), 2021, 27(2): 125-143. |
[7] | 陈丹丹, 高学庆, 刘红飞, 张 伟, 曹 睿. 经由[Ni(en)3](SeO3)配合物电镀制备的硒化镍高效电催化水分解反应[J]. 电化学(中英文), 2019, 25(5): 553-561. |
[8] | 陈慧梅,朱尚乾,黄加乐,邵敏华. 钯原子修饰的金纳米颗粒乙醇氧化电催化剂[J]. 电化学(中英文), 2018, 24(6): 740-747. |
[9] | 唐堂,江文杰,牛帅,胡劲松. 高性能析氧电催化剂的设计策略[J]. 电化学(中英文), 2018, 24(5): 409-426. |
[10] | 赵丹丹,张楠,卜令正,邵琪,黄小青. 非贵金属电催化析氧催化剂的最新进展[J]. 电化学(中英文), 2018, 24(5): 455-465. |
[11] | 姜孟秀,张晶,李月华,张蓉. 钴/氮掺杂碳催化剂及其氧还原催化机理研究[J]. 电化学(中英文), 2017, 23(6): 627-637. |
[12] | 张 瑞,吕伟欣,雷立旭. H型电解池中CO2电化学还原的阳极电解液问题[J]. 电化学(中英文), 2017, 23(1): 72-79. |
[13] | 杨太来,董文燕,杨慧敏,张力,梁镇海*. 二元析氧催化剂CoxCr1-xO3/2的制备及性能研究[J]. 电化学(中英文), 2015, 21(2): 187-192. |
[14] | Robert M.Amussen, Peter Holt-Hindle, Samantha Nigro, . 纳米多孔Pt,PtRu及PtRuIr催化剂的电化学FTIR光谱之比较(英文)[J]. 电化学(中英文), 2010, 16(3): 263-272. |
[15] | 隋升;马丽荣;. 负载型氧电极PtRuIr/TiC催化剂的制备、结构及CV研究[J]. 电化学(中英文), 2007, 13(3): 302-306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||