电化学(中英文) ›› 2025, Vol. 31 ›› Issue (7): 2515001. doi: 10.61558/2993-074X.3549
所属专题: “燃料电池电催化及绿氢制备工程”专题文章
• 论文 • 上一篇
陈明星a, 刘念a, 杜子翯a, 齐静a,*(
), 曹睿b,*(
)
收稿日期:2025-03-25
修回日期:2025-04-30
接受日期:2025-05-16
发布日期:2025-05-16
出版日期:2025-07-28
通讯作者:
齐静,曹睿
E-mail:qijing2020@htu.edu.cn;ruicao@snnu.edu.cn
Ming-Xing Chena, Nian Liua, Zi-He Dua, Jing Qia,*(
), Rui Caob,*(
)
Received:2025-03-25
Revised:2025-04-30
Accepted:2025-05-16
Online:2025-05-16
Published:2025-07-28
Contact:
Jing Qi, Rui Cao
E-mail:qijing2020@htu.edu.cn;ruicao@snnu.edu.cn
摘要:
中性析氧反应对于新能源转换与存储领域而言意义十分重大。然而,缓慢的质子耦合电子转移步骤限制了析氧反应的整体效率。因此,开发高活性的中性析氧催化剂具有十分重要的研究价值。本文通过一种简便的策略成功制备出离子液体(IL)修饰的CoSn(OH)6纳米立方体(CoSn(OH)6-IL)。修饰的离子液体并未改变CoSn(OH)6的结构特征,但可有效调控活性位点附近的质子活性。与未经修饰的CoSn(OH)6纳米立方体相比较而言,CoSn(OH)6-IL对中性析氧反应展示出更高的本征活性。例如,在1.8 V(相对于可逆氢电极)的电压下,CoSn(OH)6-IL的析氧电流密度是CoSn(OH)6的4倍。根据pH依赖性实验、原位电化学阻抗图谱、化学探针实验和同位素效应等测试结果可以得出,CoSn(OH)6-IL催化剂中的界面离子液体可以作为质子转移介体,促进中性析氧反应的质子转移速率并提高析氧中间体的表面覆盖度,有效降低活化能垒,最终能够加速析氧反应动力学。这项工作提供了一种简单且有效的策略促进质子耦合电子转移过程,并有利于指导析氧催化剂的合理设计。
陈明星, 刘念, 杜子翯, 齐静, 曹睿. 离子液体增强质子转移并促进中性析氧反应[J]. 电化学(中英文), 2025, 31(7): 2515001.
Ming-Xing Chen, Nian Liu, Zi-He Du, Jing Qi, Rui Cao. Ionic Liquid Enhanced Proton Transfer for Neutral Oxygen Evolution Reaction[J]. Journal of Electrochemistry, 2025, 31(7): 2515001.
| [1] | Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998. https://doi.org/10.1126/science.aad4998. |
| [2] | Qi J, Zhang W, Cao R. Solar-to-hydrogen energy conversion based on water splitting[J]. Adv. Energy Mater., 2018, 8(5): 1701620. https://doi.org/10.1002/aenm.201701620. |
| [3] | Wang T H, Tao L, Zhu X, Chen C, Chen W, Du S Q, Zhou Y Y, Zhou B, Wang D D, Xie C, Long P, Li W, Wang Y Y, Chen R, Zou Y Q, Wang S Y, Fu X Z, Li Y F, Duan X F. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction[J]. Nat. Catal., 2022, 5(1): 66-73. https://doi.org/10.1038/s41929-021-00721-y. |
| [4] | Kumar A, Daw P, Milstein D. Homogeneous catalysis for sustainable energy: Hydrogen and methanol economies, fuels from biomass, and related topics[J]. Chem. Rev., 2022, 122(1): 385-441. https://doi.org/10.1021/acs.chemrev.1c00412. |
| [5] | Li W L, Li F S, Yang H, Wu X J, Zhang P L, Shan Y, Sun L C. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering[J]. Nat. Commun., 2019, 10(1): 5074. https://doi.org/10.1038/s41467-019-13052-1. |
| [6] | Zhang T, Liu Y P, Ye Q T, Fan H J. Alkaline seawater electrolysis at industrial level: Recent progress and perspective[J]. J. Electrochem., 2022, 28(10): 2214006. https://doi.org/10.13208/j.electrochem.2214006. |
| [7] | Zhang L S, Yuan H Y, Wang L P, Zhang H, Zang Y J, Tian Y, Wen Y Z, Ni F L, Song H, Wang H F, Zhang B, Peng H S. The critical role of electrochemically activated adsorbates in neutral OER[J]. Sci. China Mater., 2020, 63(12): 2509-2516. https://doi.org/10.1007/s40843-020-1390-6. |
| [8] | Qi J, Chen Q Z, Chen M X, Zhang W, Shen X X, Li J, Shangguan E, Cao R. Promoting oxygen evolution electrocatalysis by coordination engineering in cobalt phosphate[J]. Small, 2024, 20(38): 2403310. https://doi.org/10.1002/smll.202403310. |
| [9] | Takashima T, Ishikawa K, Irie H. Induction of concerted proton-coupled electron transfer during oxygen evolution on hematite using lanthanum oxide as a solid proton acceptor[J]. ACS Catal. 2019, 9(10): 9212-9215. https://doi.org/10.1021/acscatal.9b02936. |
| [10] | Gentry E C, Knowles R R. Synthetic applications of proton-coupled electron transfer[J]. Acc. Chem. Res. 2016, 49(8): 1546-1556. https://doi.org/10.1021/acs.accounts.6b00272. |
| [11] | Yamaguchi A, Inuzuka R, Takashima T, Hayashi T, Hashimoto K, Nakamura R. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH[J]. Nat. Commun., 2014, 5(1): 4256. https://doi.org/10.1038/ncomms5256. |
| [12] | Meyer T J, Huynh M H V, Thorp H H. The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II[J]. Angew. Chem. Int. Ed., 2007, 46(28): 5284-5304. https://doi.org/10.1002/anie.200600917. |
| [13] | Duan L K, Wang L, Li F, Li F S, Sun L C. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands[J]. Acc. Chem. Res., 2015, 48(7): 2084-2096. https://doi.org/10.1021/acs.accounts.5b00149. |
| [14] | Yano J, Yachandra V. Mn4Ca cluster in photosynthesis: Where and how water is oxidized to dioxygen[J]. Chem. Rev., 2014, 114(8): 4175-4205. https://doi.org/10.1021/cr4004874. |
| [15] | Lubitz W, Chrysina M, Cox N. Water oxidation in photosystem II[J]. Photosynth. Res., 2019, 142(1): 105-125. https://doi.org/10.1007/s11120-019-00648-3. |
| [16] | Lee Y V, Tian B. Learning from solar energy conversion: Biointerfaces for artificial photosynthesis and biological modulation[J]. Nano Lett., 2019, 19(4): 2189-2197. https://doi.org/10.1021/acs.nanolett.9b00388. |
| [17] | Gao X Q, Yang S J, Zhang W, Cao R. Biomimicking hydrogen-bonding network by ammoniated and hydrated manganese (II) phosphate for electrocatalytic water oxidation[J]. Acta Phys. Chim. Sin., 2021, 37(7): 2007031. https://doi.org/10.3866/pku.whxb202007031. |
| [18] | Liu F, Concepcion J J, Jurss J W, Cardolaccia T, Templeton J L, Meyer T J. Mechanisms of water oxidation from the blue dimer to photosystem II[J]. Inorg. Chem., 2008, 47(6): 1727-1752. https://doi.org/10.1021/ic701249s. |
| [19] | Siegbahn P E M. A structure-consistent mechanism for dioxygen formation in photosystem II[J]. Chem. Eur. J., 2008, 14(27): 8290-8302. https://doi.org/10.1002/chem.200800445. |
| [20] | Li W L, Li F S, Zhao Y L, Liu C, Li Y Z, Yang H, Fan K, Zhang P L, Shan Y, Sun L C. Promotion of the oxygen evolution performance of Ni-Fe layered hydroxides via the introduction of a proton-transfer mediator anion[J]. Sci. China Chem., 2022, 65(2): 382-390. https://doi.org/10.1007/s11426-021-1178-y. |
| [21] | Wang J W, Zhang X Q, Huang H H, Lu T B. A nickel(II) complex as a homogeneous electrocatalyst for water oxidation at neutral pH: Dual role of HPO42- in catalysis[J]. ChemCatChem, 2016, 8(20): 3287-3293. https://doi.org/10.1002/cctc.201600796. |
| [22] | Guo H B, Wang Y N, Guo K, Lei H T, Liang Z Z, Zhang X P, Cao R. A Co porphyrin with electron-withdrawing and hydrophilic substituents for improved electrocatalytic oxygen reduction[J]. J. Electrochem., 2022, 28(9): 2214002. https://doi.org/10.13208/j.electrochem.2214002. |
| [23] | Li R X, Zhao Y F, Liu Z M. Hydrogen bonding on ionic liquid reaction systems[J]. Sci. Sin.: Chim., 2022, 52(5): 655-667. https://doi.org/10.1360/ssc-2022-0012. |
| [24] | Dong K, Zhang S J, Wang D X, Yao X Q. Hydrogen bonds in imidazolium ionic liquids[J]. J. Phys. Chem. A, 2006, 110: 9775-9782. https://doi.org/10.1021/jp054054c. |
| [25] | Yu H Z, Bencherif S, Pham-Truong T N, Ghilane J. Immobilization of molecule-based ionic liquids: A promising approach to improve elecrocatalyst performance towards the hydrogen evolution reaction[J]. New J. Chem., 2022, 46(2): 454-464. https://doi.org/10.1039/D1NJ04400A. |
| [26] | Iijima G, Kitagawa T, Katayama A, Inomata T, Yamaguchi H, Suzuki K, Hirata K, Hijikata Y, Ito M, Masuda H. CO2 reduction promoted by imidazole supported on a phosphonium-type ionic-liquid-modified Au electrode at a low overpotential[J]. ACS Catal., 2018, 8(3): 1990-2000. https://doi.org/10.1021/acscatal.7b03274. |
| [27] | Wang T, Zhang Y, Huang B, Cai B, Rao R R, Giordano L, Sun S G, Shao-Horn Y. Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds[J]. Nat. Catal., 2021, 4(9): 753-762. https://doi.org/10.1038/s41929-021-00668-0. |
| [28] | Da-Yong S, Jing C. Hydrogen-bonding interactions between ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and water[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1605-1610. https://doi.org/10.3866/PKU.WHXB201407012 |
| [29] | Ji S, Li T, Gao Z D, Song Y Y, Xu J J. Boosting the oxygen evolution reaction performance of CoS2 microspheres by subtle ionic liquid modification[J]. Chem. Commun., 2018, 54(63): 8765-8768. https://doi.org/10.1039/C8CC05352A. |
| [30] | Koishi T. Molecular dynamics study of the effect of water on hydrophilic and hydrophobic ionic liquids[J]. J. Phys. Chem. B, 2018, 122(51): 12342-12350. https://doi.org/10.1021/acs.jpcb.8b07774. |
| [31] | Gao Y, Ye L, Cao S Y, Chen H, Yao Y N, Jiang J, Sun L C. Perovskite hydroxide CoSn(OH)6 nanocubes for efficient photoreduction of CO2 to CO[J]. ACS Sustainable Chem. Eng., 2018, 6(1): 781-786. https://doi.org/10.1021/acssuschemeng.7b03119. |
| [32] | Lin X H, Gao Y L, Jiang M, Zhang Y F, Hou Y D, Dai W X, Wang S B, Ding Z X. Photocatalytic CO2 reduction promoted by uniform perovskite hydroxide CoSn(OH)6 nanocubes[J]. Appl. Catal. B, 2018, 224: 1009-1016. https://doi.org/10.1016/j.apcatb.2017.11.035. |
| [33] | Paschoal V H, Faria L F O, Ribeiro M C C. Vibrational spectroscopy of ionic liquids[J]. Chem. Rev., 2017, 117(10): 7053-7112. https://doi.org/10.1021/acs.chemrev.6b00461. |
| [34] | Herstedt M, Smirnov M, Johansson P, Chami M, Grondin J, Servant L, Lassègues J C. Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI-)[J]. J. Raman Spectrosc., 2005, 36(8): 762-770. https://doi.org/10.1002/jrs.1347. |
| [35] | Yang J, Liu H, Martens W N, Frost R L. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs[J]. J. Phys. Chem. C, 2010, 114(1): 111-119. https://doi.org/10.1021/jp908548f. |
| [36] | Song F, Schenk K, Hu X. A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes[J]. Energy Environ. Sci., 2016, 9(2): 473-477. https://doi.org/10.1039/C5EE03453A. |
| [37] | Chen M X, Li H J, Wu C L, Liang Y B, Qi J, Li J, Shangguan E, Zhang W, Cao R. Interfacial engineering of heterostructured Co(OH)2/NiPx nanosheets for enhanced oxygen evolution reaction[J]. Adv. Funct. Mater., 2022, 32(40): 2206407. https://doi.org/10.1002/adfm.202206407. |
| [38] | Satpathy B K, Raj C R, Pradhan D. Facile room temperature synthesis of CoSn(OH)6/g-C3N4 nanocomposite for oxygen evolution reaction[J]. Electrochim. Acta, 2022, 433: 141250. https://doi.org/10.1016/j.electacta.2022.141250. |
| [39] | Sahoo R, Sasmal A K, Ray C, Dutta S, Pal A, Pal T. Suitable morphology makes CoSn(OH)6 nanostructure a superior electrochemical pseudocapacitor[J]. ACS Appl. Mater. Interfaces, 2016, 8(28): 17987-17998. https://doi.org/10.1021/acsami.6b02568. |
| [40] | Lv D, Li Y, Wang L. Carbon aerogels derived from sodium lignin sulfonate embedded in carrageenan skeleton for methylene-blue removal[J]. Int. J. Biol. Macromol., 2020, 148: 979-987. https://doi.org/10.1016/j.ijbiomac.2020.01.136. |
| [41] | Li W, Li F, Zhao Y, Liu C, Li Y, Yang H, Fan K, Zhang P, Shan Y, Sun L. Promotion of the oxygen evolution performance of Ni-Fe layered hydroxides via the introduction of a proton-transfer mediator anion[J]. Sci. China Chem., 2022, 65(2): 382-390. https://doi.org/10.1007/s11426-021-1178-y. |
| [42] | Kurisaki T, Tanaka D, Inoue Y, Wakita H, Minofar B, Fukuda S, Ishiguro S-i, Umebayashi Y. Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy[J]. J. Phys. Chem. B, 2012, 116(35): 10870-10875. https://doi.org/10.1021/jp301658k. |
| [43] | Höfft O, Bahr S, Himmerlich M, Krischok S, Schaefer J A, Kempter V. Electronic structure of the surface of the ionic liquid [EMIM][Tf2N] studied by metastable impact electron spectroscopy (MIES), UPS, and XPS[J]. Langmuir, 2006, 22(17): 7120-7123. https://doi.org/10.1021/la060943v. |
| [44] | Smith E F, Rutten F J M, Villar-Garcia I J, Briggs D, Licence P. Ionic liquids in vacuo: Analysis of liquid surfaces using ultra-high-vacuum techniques[J]. Langmuir, 2006, 22(22): 9386-9392. https://doi.org/10.1021/la061248q. |
| [45] | Zhang G R, Wolker T, Sandbeck D J S, Munoz M, Mayrhofer K J J, Cherevko S, Etzold B J M. Tuning the electrocatalytic performance of ionic liquid modified Pt catalysts for the oxygen reduction reaction via cationic chain engineering[J]. ACS Catal. 2018, 8(9): 8244-8254. https://doi.org/10.1021/acscatal.8b02018. |
| [46] | Freire M G, Carvalho P J, Gardas R L, Marrucho I M, Santos L M N B F, Coutinho J A P. Mutual solubilities of water and the [Cnmim][Tf2N] hydrophobic ionic liquids[J]. J. Phys. Chem. B, 2008, 112(6): 1604-1610. https://doi.org/10.1021/jp7097203. |
| [47] | Surendranath Y, Kanan M W, Nocera D G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH[J]. J. Am. Chem. Soc., 2010, 132(46): 16501-16509. https://doi.org/10.1021/ja106102b. |
| [48] | Ju M, Chen Z W, Zhu H, Cai R M, Lin Z D, Chen Y P, Wang Y J, Gao J L, Long X, Yang S H. Fe(III) docking-activated sites in layered birnessite for efficient water oxidation[J]. J. Am. Chem. Soc., 2023, 145(20): 11215-11226. https://doi.org/10.1021/jacs.3c01181. |
| [49] | Jin K, Park J, Lee J, Yang K D, Pradhan G K, Sim U, Jeong D, Jang H L, Park S, Kim D, Sung N-E, Kim S H, Han S, Nam K T. Hydrated manganese(II) phosphate (Mn3(PO4)2·3H2O) as a water oxidation catalyst[J]. J. Am. Chem. Soc., 2014, 136(20): 7435-7443. https://doi.org/10.1021/ja5026529. |
| [50] | Liu M, Li N, Wang X M, Zhao J, Zhong D C, Li W, Bu X H. Photosystem II inspired NiFe-based electrocatalysts for efficient water oxidation via second coordination sphere effect[J]. Angew. Chem. Int. Ed., 2023, 62(20): e202300507. https://doi.org/10.1002/anie.202300507. |
| [51] | Xiao Z H, Huang Y C, Dong C L, Xie C, Liu Z J, Du S Q, Chen W, Yan D F, Tao L, Shu Z W, Zhang G H, Duan H G, Wang Y Y, Zou Y Q, Chen R, Wang S Y. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2020, 142(28): 12087-12095. https://doi.org/10.1021/jacs.0c00257. |
| [52] | Zhou P, Lv X S, Tao S S, Wu J C, Wang H F, Wei X X, Wang T H, Zhou B, Lu Y X, Frauenheim T, Fu X, Z Wang S Y, Zou Y Q. Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation[J]. Adv. Mater., 2022, 34(42): 2204089. https://doi.org/10.1002/adma.202204089. |
| [53] | Zhao T W, Shen X J, Wang Y, Hocking R K, Li Y, Rong C L, Dastafkan K, Su Z, Zhao C. In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation[J]. Adv. Funct. Mater., 2021, 31(25): 2100614. https://doi.org/10.1002/adfm.202100614. |
| [54] | Li L Q, Yang H B, Miao J W, Zhang L P, Wang H Y, Zeng Z P, Huang W, Dong X X, Liu B. Unraveling oxygen evolution reaction on carbon-based electrocatalysts: Effect of oxygen doping on adsorption of oxygenated intermediates[J]. ACS Energy Lett., 2017, 2(2): 294-300. https://doi.org/10.1021/acsenergylett.6b00681. |
| [55] | Tao H B, Xu Y H, Huang X, Chen J Z, Pei L J, Zhang J M, Chen J G, Liu B. A general method to probe oxygen evolution intermediates at operating conditions[J]. Joule, 2019, 3(6): 1498-1509. https://doi.org/10.1016/j.joule.2019.03.012. |
| [56] | Zhang B, Zheng X L, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han L L, Xu J X, Liu M, Zheng L R, García de Arquer F P, Dinh C T, Fan F J, Yuan M J, Yassitepe E, Chen N, Regier T, Liu P F, Li Y H, De Luna P, Janmohamed A, Xin H L, Yang H G, Vojvodic A, Sargent E H. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352(6283): 333-337. https://doi.org/10.1126/science.aaf1525. |
| [57] | Huang J Z, Sheng H Y, Ross R D, Han J, Wang X J, Song B, Jin S. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid[J]. Nat. Commun., 2021, 12(1): 3036. https://doi.org/10.1038/s41467-021-23390-8. |
| [1] | 张伶, 吴汪洋, 胡秋月, 杨世丹, 李莉, 廖瑞金, 魏子栋. 系列综述(2/4):重庆大学魏子栋教授课题组在电化学能源转换方面的研究进展:高性能碱性电解水催化剂[J]. 电化学(中英文), 2025, 31(9): 2515007-. |
| [2] | 秦愷池, 霍孟田, 梁宇, 朱思远, 邢子豪, 常进法. 直接乙醇燃料电池阳极电催化剂的设计与优化:C-C键活化及C1途径选择性调控的研究进展与挑战[J]. 电化学(中英文), 2025, 31(8): 2515002-. |
| [3] | 松本雄司. 离子液体中的真空一致电化学与氧化物外延相结合[J]. 电化学(中英文), 2025, 31(6): 2415004-. |
| [4] | 华炎波, 倪宝鑫, 蒋昆. 固态电解质反应器驱动的大气环境CO2捕集与电催化转化[J]. 电化学(中英文), 2025, 31(6): 2504082-. |
| [5] | 王亦清, 林治, 李明涛, 沈少华. 聚苝酰亚胺原子和电子结构的理论见解:光催化析氧活性的起源[J]. 电化学(中英文), 2025, 31(5): 2418002-. |
| [6] | 张辰浩, 胡晗宇, 杨竣皓, 张倩, 杨畅, 王得丽. Pt2NiCo金属间化合物的有序度调控及电催化氧还原反应性能研究[J]. 电化学(中英文), 2025, 31(4): 2411281-. |
| [7] | 林森, 张浪, 侯童, 丁俊阳, 彭紫默, 刘亦帆, 刘熙俊. Fe3C纳米晶体电催化一氧化氮还原合成氨[J]. 电化学(中英文), 2025, 31(4): 2412171-. |
| [8] | Muhammad Abdul Qadeer, Iqra Fareed, Asif Hussain, Muhammad Asim Farid, Sadia Nazir, Faheem K. Butt, 邹吉军, Muhammad Tahir, Shangfeng Du. 用于光催化和电化学应用的纳米结构石墨氮化碳[J]. 电化学(中英文), 2025, 31(1): 2416001-. |
| [9] | 何佩佩, 师锦华, 李笑语, 刘明杰, 方舟, 和晶, 李中坚, 彭新生, 和庆钢. 碳纳米管穿插钴基卟啉金属有机框架催化ORR[J]. 电化学(中英文), 2025, 31(1): 2405241-. |
| [10] | 高梦婷, 卫莹, 霍雪萌, 朱文洁, 刘箐箐, 强晋源, 刘婉婉, 王颖, 李旭, 黄剑锋, 冯永强. 氮掺杂碳纳米管上钴和钌位点之间的电子通信促进碱性析氢反应[J]. 电化学(中英文), 2024, 30(9): 2403081-. |
| [11] | 王昱喆, 蒋卓良, 温波, 黄耀辉, 李福军. 锂氧电池中钌基电催化剂的研究进展[J]. 电化学(中英文), 2024, 30(8): 2314004-. |
| [12] | 韦聚才, 易娟, 吴旭. 电化学法深度处理电厂脱硫废水[J]. 电化学(中英文), 2024, 30(4): 2205041-. |
| [13] | 罗贤准, 陈晓虎, 李永新. 纳米电极上单纳米气泡的伏安分析和电催化[J]. 电化学(中英文), 2024, 30(10): 2414001-. |
| [14] | 万紫轩, Aidar Kuchkaev, Dmitry Yakhvarov, 康雄武. 单分散Cu-TCPP/Cu2O杂化微球:一种具有优异电还原CO2产C2性能的级联电催化剂[J]. 电化学(中英文), 2024, 30(1): 2303271-. |
| [15] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||