[1] |
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998. https://doi.org/10.1126/science.aad4998.
|
[2] |
Qi J, Zhang W, Cao R. Solar-to-hydrogen energy conversion based on water splitting[J]. Adv. Energy Mater., 2018, 8(5): 1701620. https://doi.org/10.1002/aenm.201701620.
|
[3] |
Wang T H, Tao L, Zhu X, Chen C, Chen W, Du S Q, Zhou Y Y, Zhou B, Wang D D, Xie C, Long P, Li W, Wang Y Y, Chen R, Zou Y Q, Wang S Y, Fu X Z, Li Y F, Duan X F. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction[J]. Nat. Catal., 2022, 5(1): 66-73. https://doi.org/10.1038/s41929-021-00721-y.
|
[4] |
Kumar A, Daw P, Milstein D. Homogeneous catalysis for sustainable energy: Hydrogen and methanol economies, fuels from biomass, and related topics[J]. Chem. Rev., 2022, 122(1): 385-441. https://doi.org/10.1021/acs.chemrev.1c00412.
|
[5] |
Li W L, Li F S, Yang H, Wu X J, Zhang P L, Shan Y, Sun L C. A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering[J]. Nat. Commun., 2019, 10(1): 5074. https://doi.org/10.1038/s41467-019-13052-1.
|
[6] |
Zhang T, Liu Y P, Ye Q T, Fan H J. Alkaline seawater electrolysis at industrial level: Recent progress and perspective[J]. J. Electrochem., 2022, 28(10): 2214006. https://doi.org/10.13208/j.electrochem.2214006.
|
[7] |
Zhang L S, Yuan H Y, Wang L P, Zhang H, Zang Y J, Tian Y, Wen Y Z, Ni F L, Song H, Wang H F, Zhang B, Peng H S. The critical role of electrochemically activated adsorbates in neutral OER[J]. Sci. China Mater., 2020, 63(12): 2509-2516. https://doi.org/10.1007/s40843-020-1390-6.
|
[8] |
Qi J, Chen Q Z, Chen M X, Zhang W, Shen X X, Li J, Shangguan E, Cao R. Promoting oxygen evolution electrocatalysis by coordination engineering in cobalt phosphate[J]. Small, 2024, 20(38): 2403310. https://doi.org/10.1002/smll.202403310.
|
[9] |
Takashima T, Ishikawa K, Irie H. Induction of concerted proton-coupled electron transfer during oxygen evolution on hematite using lanthanum oxide as a solid proton acceptor[J]. ACS Catal. 2019, 9(10): 9212-9215. https://doi.org/10.1021/acscatal.9b02936.
|
[10] |
Gentry E C, Knowles R R. Synthetic applications of proton-coupled electron transfer[J]. Acc. Chem. Res. 2016, 49(8): 1546-1556. https://doi.org/10.1021/acs.accounts.6b00272.
|
[11] |
Yamaguchi A, Inuzuka R, Takashima T, Hayashi T, Hashimoto K, Nakamura R. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH[J]. Nat. Commun., 2014, 5(1): 4256. https://doi.org/10.1038/ncomms5256.
|
[12] |
Meyer T J, Huynh M H V, Thorp H H. The possible role of proton-coupled electron transfer (PCET) in water oxidation by photosystem II[J]. Angew. Chem. Int. Ed., 2007, 46(28): 5284-5304. https://doi.org/10.1002/anie.200600917.
|
[13] |
Duan L K, Wang L, Li F, Li F S, Sun L C. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands[J]. Acc. Chem. Res., 2015, 48(7): 2084-2096. https://doi.org/10.1021/acs.accounts.5b00149.
|
[14] |
Yano J, Yachandra V. Mn4Ca cluster in photosynthesis: Where and how water is oxidized to dioxygen[J]. Chem. Rev., 2014, 114(8): 4175-4205. https://doi.org/10.1021/cr4004874.
|
[15] |
Lubitz W, Chrysina M, Cox N. Water oxidation in photosystem II[J]. Photosynth. Res., 2019, 142(1): 105-125. https://doi.org/10.1007/s11120-019-00648-3.
|
[16] |
Lee Y V, Tian B. Learning from solar energy conversion: Biointerfaces for artificial photosynthesis and biological modulation[J]. Nano Lett., 2019, 19(4): 2189-2197. https://doi.org/10.1021/acs.nanolett.9b00388.
|
[17] |
Gao X Q, Yang S J, Zhang W, Cao R. Biomimicking hydrogen-bonding network by ammoniated and hydrated manganese (II) phosphate for electrocatalytic water oxidation[J]. Acta Phys. Chim. Sin., 2021, 37(7): 2007031. https://doi.org/10.3866/pku.whxb202007031.
|
[18] |
Liu F, Concepcion J J, Jurss J W, Cardolaccia T, Templeton J L, Meyer T J. Mechanisms of water oxidation from the blue dimer to photosystem II[J]. Inorg. Chem., 2008, 47(6): 1727-1752. https://doi.org/10.1021/ic701249s.
|
[19] |
Siegbahn P E M. A structure-consistent mechanism for dioxygen formation in photosystem II[J]. Chem. Eur. J., 2008, 14(27): 8290-8302. https://doi.org/10.1002/chem.200800445.
|
[20] |
Li W L, Li F S, Zhao Y L, Liu C, Li Y Z, Yang H, Fan K, Zhang P L, Shan Y, Sun L C. Promotion of the oxygen evolution performance of Ni-Fe layered hydroxides via the introduction of a proton-transfer mediator anion[J]. Sci. China Chem., 2022, 65(2): 382-390. https://doi.org/10.1007/s11426-021-1178-y.
|
[21] |
Wang J W, Zhang X Q, Huang H H, Lu T B. A nickel(II) complex as a homogeneous electrocatalyst for water oxidation at neutral pH: Dual role of HPO42- in catalysis[J]. ChemCatChem, 2016, 8(20): 3287-3293. https://doi.org/10.1002/cctc.201600796.
|
[22] |
Guo H B, Wang Y N, Guo K, Lei H T, Liang Z Z, Zhang X P, Cao R. A Co porphyrin with electron-withdrawing and hydrophilic substituents for improved electrocatalytic oxygen reduction[J]. J. Electrochem., 2022, 28(9): 2214002. https://doi.org/10.13208/j.electrochem.2214002.
|
[23] |
Li R X, Zhao Y F, Liu Z M. Hydrogen bonding on ionic liquid reaction systems[J]. Sci. Sin.: Chim., 2022, 52(5): 655-667. https://doi.org/10.1360/ssc-2022-0012.
|
[24] |
Dong K, Zhang S J, Wang D X, Yao X Q. Hydrogen bonds in imidazolium ionic liquids[J]. J. Phys. Chem. A, 2006, 110: 9775-9782. https://doi.org/10.1021/jp054054c.
|
[25] |
Yu H Z, Bencherif S, Pham-Truong T N, Ghilane J. Immobilization of molecule-based ionic liquids: A promising approach to improve elecrocatalyst performance towards the hydrogen evolution reaction[J]. New J. Chem., 2022, 46(2): 454-464. https://doi.org/10.1039/D1NJ04400A.
|
[26] |
Iijima G, Kitagawa T, Katayama A, Inomata T, Yamaguchi H, Suzuki K, Hirata K, Hijikata Y, Ito M, Masuda H. CO2 reduction promoted by imidazole supported on a phosphonium-type ionic-liquid-modified Au electrode at a low overpotential[J]. ACS Catal., 2018, 8(3): 1990-2000. https://doi.org/10.1021/acscatal.7b03274.
|
[27] |
Wang T, Zhang Y, Huang B, Cai B, Rao R R, Giordano L, Sun S G, Shao-Horn Y. Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds[J]. Nat. Catal., 2021, 4(9): 753-762. https://doi.org/10.1038/s41929-021-00668-0.
|
[28] |
Da-Yong S, Jing C. Hydrogen-bonding interactions between ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and water[J]. Acta Phys. Chim. Sin., 2014, 30(9): 1605-1610. https://doi.org/10.3866/PKU.WHXB201407012
|
[29] |
Ji S, Li T, Gao Z D, Song Y Y, Xu J J. Boosting the oxygen evolution reaction performance of CoS2 microspheres by subtle ionic liquid modification[J]. Chem. Commun., 2018, 54(63): 8765-8768. https://doi.org/10.1039/C8CC05352A.
|
[30] |
Koishi T. Molecular dynamics study of the effect of water on hydrophilic and hydrophobic ionic liquids[J]. J. Phys. Chem. B, 2018, 122(51): 12342-12350. https://doi.org/10.1021/acs.jpcb.8b07774.
|
[31] |
Gao Y, Ye L, Cao S Y, Chen H, Yao Y N, Jiang J, Sun L C. Perovskite hydroxide CoSn(OH)6 nanocubes for efficient photoreduction of CO2 to CO[J]. ACS Sustainable Chem. Eng., 2018, 6(1): 781-786. https://doi.org/10.1021/acssuschemeng.7b03119.
|
[32] |
Lin X H, Gao Y L, Jiang M, Zhang Y F, Hou Y D, Dai W X, Wang S B, Ding Z X. Photocatalytic CO2 reduction promoted by uniform perovskite hydroxide CoSn(OH)6 nanocubes[J]. Appl. Catal. B, 2018, 224: 1009-1016. https://doi.org/10.1016/j.apcatb.2017.11.035.
|
[33] |
Paschoal V H, Faria L F O, Ribeiro M C C. Vibrational spectroscopy of ionic liquids[J]. Chem. Rev., 2017, 117(10): 7053-7112. https://doi.org/10.1021/acs.chemrev.6b00461.
|
[34] |
Herstedt M, Smirnov M, Johansson P, Chami M, Grondin J, Servant L, Lassègues J C. Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI-)[J]. J. Raman Spectrosc., 2005, 36(8): 762-770. https://doi.org/10.1002/jrs.1347.
|
[35] |
Yang J, Liu H, Martens W N, Frost R L. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs[J]. J. Phys. Chem. C, 2010, 114(1): 111-119. https://doi.org/10.1021/jp908548f.
|
[36] |
Song F, Schenk K, Hu X. A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn(OH)6 nanocubes[J]. Energy Environ. Sci., 2016, 9(2): 473-477. https://doi.org/10.1039/C5EE03453A.
|
[37] |
Chen M X, Li H J, Wu C L, Liang Y B, Qi J, Li J, Shangguan E, Zhang W, Cao R. Interfacial engineering of heterostructured Co(OH)2/NiPx nanosheets for enhanced oxygen evolution reaction[J]. Adv. Funct. Mater., 2022, 32(40): 2206407. https://doi.org/10.1002/adfm.202206407.
|
[38] |
Satpathy B K, Raj C R, Pradhan D. Facile room temperature synthesis of CoSn(OH)6/g-C3N4 nanocomposite for oxygen evolution reaction[J]. Electrochim. Acta, 2022, 433: 141250. https://doi.org/10.1016/j.electacta.2022.141250.
|
[39] |
Sahoo R, Sasmal A K, Ray C, Dutta S, Pal A, Pal T. Suitable morphology makes CoSn(OH)6 nanostructure a superior electrochemical pseudocapacitor[J]. ACS Appl. Mater. Interfaces, 2016, 8(28): 17987-17998. https://doi.org/10.1021/acsami.6b02568.
|
[40] |
Lv D, Li Y, Wang L. Carbon aerogels derived from sodium lignin sulfonate embedded in carrageenan skeleton for methylene-blue removal[J]. Int. J. Biol. Macromol., 2020, 148: 979-987. https://doi.org/10.1016/j.ijbiomac.2020.01.136.
|
[41] |
Li W, Li F, Zhao Y, Liu C, Li Y, Yang H, Fan K, Zhang P, Shan Y, Sun L. Promotion of the oxygen evolution performance of Ni-Fe layered hydroxides via the introduction of a proton-transfer mediator anion[J]. Sci. China Chem., 2022, 65(2): 382-390. https://doi.org/10.1007/s11426-021-1178-y.
|
[42] |
Kurisaki T, Tanaka D, Inoue Y, Wakita H, Minofar B, Fukuda S, Ishiguro S-i, Umebayashi Y. Surface analysis of ionic liquids with and without lithium salt using X-ray photoelectron spectroscopy[J]. J. Phys. Chem. B, 2012, 116(35): 10870-10875. https://doi.org/10.1021/jp301658k.
|
[43] |
Höfft O, Bahr S, Himmerlich M, Krischok S, Schaefer J A, Kempter V. Electronic structure of the surface of the ionic liquid [EMIM][Tf2N] studied by metastable impact electron spectroscopy (MIES), UPS, and XPS[J]. Langmuir, 2006, 22(17): 7120-7123. https://doi.org/10.1021/la060943v.
|
[44] |
Smith E F, Rutten F J M, Villar-Garcia I J, Briggs D, Licence P. Ionic liquids in vacuo: Analysis of liquid surfaces using ultra-high-vacuum techniques[J]. Langmuir, 2006, 22(22): 9386-9392. https://doi.org/10.1021/la061248q.
|
[45] |
Zhang G R, Wolker T, Sandbeck D J S, Munoz M, Mayrhofer K J J, Cherevko S, Etzold B J M. Tuning the electrocatalytic performance of ionic liquid modified Pt catalysts for the oxygen reduction reaction via cationic chain engineering[J]. ACS Catal. 2018, 8(9): 8244-8254. https://doi.org/10.1021/acscatal.8b02018.
|
[46] |
Freire M G, Carvalho P J, Gardas R L, Marrucho I M, Santos L M N B F, Coutinho J A P. Mutual solubilities of water and the [Cnmim][Tf2N] hydrophobic ionic liquids[J]. J. Phys. Chem. B, 2008, 112(6): 1604-1610. https://doi.org/10.1021/jp7097203.
|
[47] |
Surendranath Y, Kanan M W, Nocera D G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH[J]. J. Am. Chem. Soc., 2010, 132(46): 16501-16509. https://doi.org/10.1021/ja106102b.
|
[48] |
Ju M, Chen Z W, Zhu H, Cai R M, Lin Z D, Chen Y P, Wang Y J, Gao J L, Long X, Yang S H. Fe(III) docking-activated sites in layered birnessite for efficient water oxidation[J]. J. Am. Chem. Soc., 2023, 145(20): 11215-11226. https://doi.org/10.1021/jacs.3c01181.
|
[49] |
Jin K, Park J, Lee J, Yang K D, Pradhan G K, Sim U, Jeong D, Jang H L, Park S, Kim D, Sung N-E, Kim S H, Han S, Nam K T. Hydrated manganese(II) phosphate (Mn3(PO4)2·3H2O) as a water oxidation catalyst[J]. J. Am. Chem. Soc., 2014, 136(20): 7435-7443. https://doi.org/10.1021/ja5026529.
|
[50] |
Liu M, Li N, Wang X M, Zhao J, Zhong D C, Li W, Bu X H. Photosystem II inspired NiFe-based electrocatalysts for efficient water oxidation via second coordination sphere effect[J]. Angew. Chem. Int. Ed., 2023, 62(20): e202300507. https://doi.org/10.1002/anie.202300507.
|
[51] |
Xiao Z H, Huang Y C, Dong C L, Xie C, Liu Z J, Du S Q, Chen W, Yan D F, Tao L, Shu Z W, Zhang G H, Duan H G, Wang Y Y, Zou Y Q, Chen R, Wang S Y. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2020, 142(28): 12087-12095. https://doi.org/10.1021/jacs.0c00257.
|
[52] |
Zhou P, Lv X S, Tao S S, Wu J C, Wang H F, Wei X X, Wang T H, Zhou B, Lu Y X, Frauenheim T, Fu X, Z Wang S Y, Zou Y Q. Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation[J]. Adv. Mater., 2022, 34(42): 2204089. https://doi.org/10.1002/adma.202204089.
|
[53] |
Zhao T W, Shen X J, Wang Y, Hocking R K, Li Y, Rong C L, Dastafkan K, Su Z, Zhao C. In situ reconstruction of V-doped Ni2P pre-catalysts with tunable electronic structures for water oxidation[J]. Adv. Funct. Mater., 2021, 31(25): 2100614. https://doi.org/10.1002/adfm.202100614.
|
[54] |
Li L Q, Yang H B, Miao J W, Zhang L P, Wang H Y, Zeng Z P, Huang W, Dong X X, Liu B. Unraveling oxygen evolution reaction on carbon-based electrocatalysts: Effect of oxygen doping on adsorption of oxygenated intermediates[J]. ACS Energy Lett., 2017, 2(2): 294-300. https://doi.org/10.1021/acsenergylett.6b00681.
|
[55] |
Tao H B, Xu Y H, Huang X, Chen J Z, Pei L J, Zhang J M, Chen J G, Liu B. A general method to probe oxygen evolution intermediates at operating conditions[J]. Joule, 2019, 3(6): 1498-1509. https://doi.org/10.1016/j.joule.2019.03.012.
|
[56] |
Zhang B, Zheng X L, Voznyy O, Comin R, Bajdich M, García-Melchor M, Han L L, Xu J X, Liu M, Zheng L R, García de Arquer F P, Dinh C T, Fan F J, Yuan M J, Yassitepe E, Chen N, Regier T, Liu P F, Li Y H, De Luna P, Janmohamed A, Xin H L, Yang H G, Vojvodic A, Sargent E H. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352(6283): 333-337. https://doi.org/10.1126/science.aaf1525.
|
[57] |
Huang J Z, Sheng H Y, Ross R D, Han J, Wang X J, Song B, Jin S. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid[J]. Nat. Commun., 2021, 12(1): 3036. https://doi.org/10.1038/s41467-021-23390-8.
|